DISTANCE IRREGULAR VERTEX LABELING OF GRAPH

SLAMIN

Universitas Jember, Indonesia

Workshop KK Kombinatorika: Pewarnaan dan Pelabelan pada Graf Jurusan Matematika Universitas Andalas Padang, 25 April 2019

Outline

INTRODUCTION History of Graph Theory

Impossible because there are regions connection by odd numbers of bridge

INTRODUCTION History of Graph Theory

Graph representation of 7 bridges in Konigsberg If a pseudo graph G has Eulerian circuit, then the graph is connected and the degree of every vertex is even onarc

INTRODUCTION History of Graph Theory

Development of Graph Theory

Since then many other concepts in Graph Theory have sprung up to solve problems in daily life.

Graph Labelings

Graph labeling is growing very fast with several type and broad range of applications

- G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz, F. Saba (1988)
- M. Bačá, S. Jendrol', M. Miller, and J. Ryan (2007)

Distance magic labeling of graphs

• M. Miller, C. Rodger, R. Simanjuntak (2003)

(a,d)-distance antimagic graphs

• S. Arumugam, N. Kamatchi (2012)

Definition

A distance irregular vertex labeling of the graph G with v vertices is an assignment $\lambda : V \rightarrow \{1, 2, ..., k\}$ so that the weights calculated at vertices are distinct.

Weight

The *weight* of a vertex x in G is defined as the sum of the labels of all the vertices adjacent to x (distance 1 from x), that is,

$$wt(x) = \sum_{y \in N(x)} \lambda(y)$$

dis(G)

The *distance irregularity strength* of *G*, denoted by *dis*(*G*), is the minimum value of the largest label *k* over all such irregular assignments.

Introduction Distance Irregular Vertex Labeling

AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 69(3) (2017), Pages 315–322

On distance-irregular labelings of cycles and wheels

NOVI H. BONG YUQING LIN

School of Electrical Engineering and Computer Science The University of Newcastle NSW 2038 Australia c3171900@uon.edu.au yuqing.lin@newcastle.edu.au

SLAMIN

University of Jember East Java Indonesia slamin@unej.ac.id

In memory of Mirka Miller

Introduction Distance Irregular Vertex Labeling

Electronic Journal of Graph Theory and Applications 6 (1) (2018), 61-83

Electronic Journal of Graph Theory and Applications

On inclusive distance vertex irregular labelings

Martin Bača^a, Andrea Semaničová-Feňovčíková^a, Slamin^b, Kiki A. Sugeng^c

^aDepartment of Applied Mathematics and Informatics, Technical University, Letná 9, Košice, Slovakia ^bInformation System Study Program, University of Jember, Jl. Kalimantan 37 Jember, Indonesia ^cDepartment of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia

martin.baca@tuke.sk, andrea.fenovcikova@tuke.sk, slamin@unej.ac.id, kiki@sci.ui.ac.id

Example

A distance irregular vertex labeling of the graph G with 5 vertices with dis(G) = 2.

dis(G) Necessary Condition

Observation 1

Let *u* and *w* be any two distinct vertices in a connected graph *G*. If *u* and *w* have identical neighbors, i.e., N(u) = N(w), then *G* has no distance irregular vertex labeling.

Graphs that have no distance irregular labeling:

- Complete bipartite graphs $K_{m,n}$ for any $m,n \ge 2$.
- Complete multipartite graphs $H_{m,n}$ for any $m,n \ge 2$.
- Stars on n+1 vertices S_n for $n \ge 2$.

dis(G)

• Trees T_n for any $n \ge 3$, that contain a vertex with at least two leaves.

Other Necessary Condition

Observation 2

dis(G)

Let *u* and *w* be two adjacent vertices in a connected graph *G*. If $N(u) - \{w\} = N(w) - \{u\}$, then the labels of *u* and *w* must be distinct, that is, $\lambda(u) \neq \lambda(w)$.

Lemma

Let G be a connected graph on v vertices with minimum degree δ and maximum degree Δ and there is no vertex having identical neighbors. Then

$$dis(G) \ge \left\lceil \frac{\nu + \delta - 1}{\Delta} \right\rceil$$

Proof

- The smallest weight is δ .
- Since the weight must be distinct, the largest weight is at least $v + \delta 1$.
- This weight is obtained from the sum of at most Δ integers.
- Thus the largest label that contributes to this weight must be at least $\left[\frac{\nu + \delta 1}{\Delta}\right]$.

dis(G) Complete Graphs

Theorem

Let K_n be a complete graph with $n \ge 3$ vertices. Then dis $(K_n) = n$.

Theorem

dis(G)

Let P_n be a path with $n \ge 4$ vertices. Then

Paths

$$dis(P_n) = \left\lceil \frac{n}{2} \right\rceil$$

Theorem ____

dis(G)

Let C_n be a cycle with $n \ge 5$ vertices. Then

Cycles

$$dis(C_n) = \left\lceil \frac{n+1}{2} \right\rceil$$
 if $n = 0, 1, 2, 5 \mod 8$.
(Slamin, 2017)

$$\mathit{dis}(C_n) = \left\{ \begin{array}{cc} \frac{n+3}{2} & \textit{if } n \equiv 3,7 \mod 8 \\ \lceil \frac{n+1}{2} \rceil & \textit{if } n \equiv 4,6 \mod 8 \end{array} \right.$$

(N.H. Bong, Y. Lin, Slamin, 2017+)

Theorem Let W_n be a wheel with $n \ge 5$ rim vertices. Then $dis(W_n) = \left\lceil \frac{n+1}{2} \right\rceil$ if $n = 0, 1, 2, 5 \mod 8$. (Slamin, 2017) $dis(W_n) = \begin{cases} \frac{n+3}{2} & \text{if } n \equiv 3,7 \mod 8\\ \lceil \frac{n+1}{2} \rceil & \text{if } n \equiv 4,6 \mod 8 \end{cases}$

Wheels

dis(G)

(N.H. Bong, Y. Lin, Slamin, 2017+)

Theorem

Let f_n be a friendship graph with $n \ge 3$ triangles. Then dis $(f_n)=2n$.

Proof

- Every vertex on the rim must have different label, otherwise there will be the same weight among the vertices
- Thus $dis(f_n) \ge 2n$.
- Label the 2n vertices of f_n as follows:

 $\lambda_1(c) = 1$

 $\lambda_1(x_i)= 2i; \ i=1\leq i\leq n$

 $\lambda_1(y_i) = 2i-1; \quad i=1 \leq i \leq n$

This gives the weights for vertices:

$$egin{aligned} & \omega_1(c) = \ rac{2n(2n+1)}{2} \ & \omega_1(x_i) = \ 2i; \ i=1 \leq i \leq n \ & \omega_1(y_i) = \ 2i+1; \ i=1 \leq i \leq n \end{aligned}$$

- The labeling implies that $dis(f_n) \le 2n$
- Therefore $dis(f_n) = 2n$

(Slamin, T. Windartini, K.D. Purnomo, 2017+)

dis(G)

dis(G) Other Wheel Related Graphs

(Slamin, T. Windartini, K.D. Purnomo, 2017+)

Definition

dis(G)

An *inclusive distance irregular vertex labeling* of the graph G with v vertices is an assignment $f : V \rightarrow \{1, 2, ..., k\}$ so that the weights calculated at vertices are distinct.

Weight

The *weight* of a vertex *x* in *G* is defined as the sum of the label of *x* and the labels of all the vertices adjacent to *x* (distance 1 from *x*), that is,

$$wt_f(v) = f(v) + \sum_{u:1 \le d(u,v) \le d} f(u).$$

dis(G)

The *inclusive distance irregularity strength* of G, denoted by $\overline{dis}(G)$, is the minimum value of the largest label k over all such irregular assignments.

(N.H. Bong, Y. Lin, Slamin, 2017+)

Example

Inclusive distance irregular vertex labeling of the graph G with 5 vertices with dis(G) = 2.

dis(G) Double Stars

Theorem

Let S(m,n) be a double star on m + n + 2 vertices. Then

$$\overline{\operatorname{dis}}\left(S(m,n)\right) = \begin{cases} n & \text{if } m < n\\ n+1 & \text{if } m = n. \end{cases}$$

(N.H. Bong, Y. Lin, Slamin, 2017+)

(N.H. Bong, Y. Lin, Slamin, 2017+)

Theorem

Let P_n be a path on *n* vertices. Then

Paths

$$\overline{\operatorname{dis}}(P_n) = \begin{cases} \infty & \textit{for } n = 2, \\ 3 & \textit{for } n = 5, \\ \left\lceil \frac{n+1}{3} \right\rceil & \textit{for } n \not\equiv 2 \pmod{9}, n \neq 5 \end{cases}$$

and

dis(G)

$$\frac{n+1}{3} \le \overline{\operatorname{dis}}(P_n) \le \frac{n+1}{3} + 1,$$

when $n \equiv 2 \pmod{9}$, $n \geq 11$.

(M. Baca, A. Semanicova'-Fenovcıkova, Slamin, K. A. Sugeng, 2017+)

Theorem

Let C_n be a cycle on *n* vertices. Then

Cycles

$$\overline{\operatorname{dis}}(C_n) = \begin{cases} \infty & \text{for } n = 3, \\ 4 & \text{for } n = 4, \\ \left\lceil \frac{n+2}{3} \right\rceil & \text{for } n \not\equiv 2, 3, 4 \pmod{18}, n \geq 5 \end{cases}$$

and

dis(G)

$$\left\lceil \frac{n+2}{3} \right\rceil \le \overline{\operatorname{dis}}(C_n) \le \left\lceil \frac{n+2}{3} \right\rceil + 1,$$

when $n \equiv 2, 3, 4 \pmod{18}$, $n \ge 20$.

(M. Baca, A. Semanicova'-Fenovcıkova, Slamin, K. A. Sugeng, 2017+)

dis(G) Wheels

Theorem

Let W_n be a wheel on n rim vertices. Then

$$\overline{\operatorname{dis}}(W_n) = \begin{cases} \infty & \text{for } n = 3, \\ 4 & \text{for } n = 4, \\ \left\lceil \frac{n+2}{3} \right\rceil & \text{for } n \not\equiv 2, 3, 4 \pmod{18}, n \ge 5 \end{cases}$$

and

$$\left\lceil \frac{n+2}{3} \right\rceil \le \overline{\operatorname{dis}}(W_n) \le \left\lceil \frac{n+2}{3} \right\rceil + 1,$$

when $n \equiv 2, 3, 4 \pmod{18}$, $n \ge 20$.

(M. Baca, A. Semanicova'-Fenovcıkova, Slamin, K. A. Sugeng, 2017+)

Open Problem 1

Determine the (inclusive) distance irregularity strengths of some particular families of graphs.

Open Problem 2

Expand the (inclusive) distance irregular labeling of graphs to the distance at least 2.

Open Problem 3

Characterize the relationship between inclusive distance irregular labeling and (a,d)-distance antimagic labeling.

References

- [1] S. Arumugam and N. Kamatchi. On (*a*, *d*) -distance antimagic graphs, *Australasian Journal of Combinatorics* 54 (2012), 279-287.
- [2] M. Baca, S. Jendrol, M. Miller and J. Ryan, On irregular total labellings, Discrete Math. 307 (2007), 1378-1388.
- [3] M. Baca, A. Semanicova´-Fenovcıkova, Slamin, K. A. Sugeng, On inclusive distance vertex irregular labelings, *submitted to EJGTA*.
- [4] N.H. Bong, Y. Lin and Slamin, *Australasian Journal of Combinatorics* 69 (3) (2017), 315–322
- [5] N.H. Bong, Y. Lin and Slamin, On inclusive and non-inclusive vertex irregular d-distance vertex labelings, *submitted to JCMCC*.
- [6] G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz and F. Saba, Irregular networks, *Congr. Numer.* 64 (1988) 187-192.
- [7] M. Miller, C. Rodger and R. Simanjuntak, Distance magic labelings of graphs, *Australasian Journal of Combinatorics* 28. 305-315.
- [8] Slamin,On distance irregular labelings of graphs, *Far East Journal of Mathematical Sciences (FJMS)* 102 (5) (2017) 919-932.

THANK YOU