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INTRODUCTION History of Graph Theory

Not able to walk back to A "_\

through each bridge exactly once

— T

Impossible because there are regions
connection by odd numbers of bridge
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then the graph is connected and the degree
. of every vertex is even 2 2 A 4




INTRODUCTION History of Graph Theory

mm Development of Graph Theory

Since then many other concepts in Graph Theory
have sprung up to solve problems in daily life.

= Graph Labelings

Graph labeling is growing very fast with several
type and broad range of applications




Introduction Motivations

s Irregular assignment of graph

* G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S.
Ruiz, F. Saba (1988)

* M. Bacg, S. Jendrol’, M. Miller, and J. Ryan (2007)

mm Distance magic labeling of graphs

* M. Miller, C. Rodger, R. Simanjuntak (2003)

(a,d)-distance antimagic graphs

e S. Arumugam, N. Kamatchi (2012)




Introduction  Distance Irregular Vertex Labeling

Definition

A distance irregular vertex labeling of the graph G with v vertices is
an assignment A : V- {1, 2,...,, k} so that the weights calculated at
vertices are distinct.

The weight of a vertex x in G is defined as the sum of the labels of all
the vertices adjacent to x (distance 1 from x), that is,

wt(x) = ZyEN(x) AY)

The distance irregularity strength of G, denoted by dis(G), is the
minimum value of the largest label k over all such irregular
assignments.

(Slamin, 2017)
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dis(G) Basic Concept

A distance irregular vertex labeling of the graph G with 5 vertices
with dis(G) = 2.




dis(G) Necessary Condition
N Coenains

Let u and w be any two distinct vertices in a connected
graph G. If u and w have identical neighbors, i.e.,

N(u) = N(w), then G has no distance irregular vertex
labeling.




dis(G) Non Distance Irregular Labeling

Graphs that have no distance irregular labeling:

Complete bipartite graphs K, , for any m,n = 2.
Complete multipartite graphs H,, , for any m,n = 2.
Stars on n+1 vertices S, forn > 2.

Trees T, for any n 2 3, that contain a vertex with at
least two leaves.




dis(G) Other Necessary Condition

Let v and w be two adjacent vertices in a connected
graph G. If N(u) — {w} = N(w) — {u}, then the labels of u
and w must be distinct, that is, A(u) # A(w).




dis(G) Lower bound

Let G be a connected graph on v vertices with minimum degree
6 and maximum degree A and there is no vertex having identical
neighbors. Then

dis(G) > P +O0- 1].

A

* The smallest weight is 6.

* Since the weight must be distinct, the largest weight is at least v
+6—1.

* This weight is obtained from the sum of at most A integers.

* Thus the largest label that contributes to this weight must be at
least "v +8-— 1]
A .

(Slamin, 2017)



dis(G) Complete Graphs

Let K, be a complete graph with n > 3 vertices. Then
dis(K,) = n.

n(n-1)/2 -1

n(n-1)/2-n(n 2)n(n-1)/2 -2

n(n-1)/2-4 n(n-1)/2-3
(Slamin, 2017)



Let P, be a path with n > 4 vertices. Then

dis(P,) = [%}

(Slamin, 2017)



dis(G) Cycles

Let C, be a cycle with n > 5 vertices. Then

dis(C,) = [" ; 1] if n=0,1,2,5 mod 8.
(Slamin, 2017)

W

TL=4-

| B ifn=3,7 mod 8
dZS(Cn) - { [&ﬁ] zfn 54,6 mod 8

2

(N.H. Bong, Y. Lin, Slamin, 2017+)




dis(G) Wheels

Let W, be a wheel with n 25 rim vertices. Then

dis(W, ) = [" : 1] ifn=0,125 mod 8.
(Slamin, 2017)

W

TL=4-

ifn=3,7 mod 8

dis(W,) ={ [%] ifn=4,6 mod 8

(N.H. Bong, Y. Lin, Slamin, 2017+)




dis(G) Friendship Graphs

Let f, be a friendship graph with n > 3 triangles. Then dis(f,)=2n.

* Every vertex on the rim must have different label, otherwise there will be the
same weight among the vertices

* Thus dis(f,) 2 2n.

* Label the 2n vertices of f, as follows: This gives the weights for vertices:
A(e) =1 wi(c) = %@
M(@i)= 24; i=1<i<n wi(zi)= 21, 1=1<i1<n
MEy)= 2—-1; i=1<i<n | w(y)= 2i+1; i=1<i<n

* The labeling implies that dis(f,) < 2n

* Therefore dis(f,) = 2n
(Slamin, T. Windartini, K.D. Purnomo, 2017+)



dis(G) Friendship Graphs
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dis(G) Other Wheel Related Graphs

Let H, be a helm with n > 3 rim vertices. Then dis(H,) = n

Let I be a flower with n > 3 rim vertices. Then dis(Fl,) = n

Fan

Let F, be a fan with n 2 4 rim vertices. Then dis(F,) = [n/2]

(Slamin, T. Windartini, K.D. Purnomo, 2017+)



E(G) Inclusive Distance Irregular Vertex Labeling

Definition

An inclusive distance irregular vertex labeling of the graph G with v
vertices is an assignment f: V = {1, 2,..., k} so that the weights
calculated at vertices are distinct.

The weight of a vertex x in G is defined as the sum of the label of x
and the labels of all the vertices adjacent to x (distance 1 from x),

hat is,
e wti®) = f0)+ 3 f(u)

w:l<d(u,v)<d)

The inclusive distance irregularity strength of G, denoted by di_s(G), is
the minimum value of the largest label k over all such irregular
assignments.

(N.H. Bong, Y. Lin, Slamin, 2017+)



E(G) Basic Concept

Inclusive distance irregular vertex labeling of the graph G with 5
vertices with dis(G) = 2.

S 7 4




E(G) Double Stars

Let S(m,n) be a double star on m + n + 2 vertices. Then

dis (S(m, n)) = { n+q % i Z

(N.H. Bong, Y. Lin, Slamin, 2017+)



Let S_be a star on n + 1 vertices and n > 1. Then dis(S,) = n

2

n+1

(N.H. Bong, Y. Lin, Slamin, 2017+)



dis(G) Paths

Let P, be a path on n vertices. Then

r

00 forn = 2,
dis(P,) = { 3 forn =5,
\l—n_;_l] forn#2 (mod9),n+#5

and
v < dis(P,) < B 41,

whenn =2 (mod 9),n > 11.

(M. Baca, A. Semanicova -Fenovcikova, Slamin, K. A. Sugeng, 2017+)



E(G) Cycles

Let C, be a cycle on n vertices. Then

(00 forn = 3,
diS(C,,) =44 forn =4,
\ I'EQ] forn #2,3,4 (mOd 18),n>5

3

and
[%3%] < dis(Cn) < ["§2] +1,

whenn = 2,3,4 (mod 18), n > 20.

(M. Baca, A. Semanicova -Fenovcikova, Slamin, K. A. Sugeng, 2017+)



E(G) Wheels

Let W, be a wheel on n rim vertices. Then

(o0 forn =3,

dis(Wy) = < 4 forn =4,
\ ["7—2-] forn ¢ 2a334 (mOd 18), n 2 H

and

[242] < dis(W,) < [%2] + 1,

3

whenn = 2,3,4 (mod 18), n > 20.

(M. Baca, A. Semanicova -Fenovcikova, Slamin, K. A. Sugeng, 2017+)



Open Problems
Open Problem 1

Determine the (inclusive) distance irregularity strengths of
some particular families of graphs.

Open Problem 2

Expand the (inclusive) distance irregular labeling of
graphs to the distance at least 2.

Open Problem 3

Characterize the relationship between inclusive distance
irregular labeling and (a,d)-distance antimagic labeling.
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