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Abstract

Partial differential equations derived from momentum equations
and a continuity equation are spatially discretized. ODE solvers are
applied to a resultant system of ordinary differential equations.

1 Reduction of governing equations

1.1 Shallow water equations

A tsunami simulation involves physical quantities such as the velocity of
water (u, v, w) and the pressure p. Those quantities are functions of the
coordinates (x, y, z) and the time t, and the conservation law leads to partial
differential equation. Consider the Euler equations
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and the continuity equation
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Suppose that the mean sea level is defined by z = 0, that the sea surface
is defined by z = ζ (x, y, t), and that the sea floor is defined by z = h (x, y)
(Figure 1). Let
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Figure 1: The mean sea level (z = 0), the sea surface (z = ζ (x, y, t)), and
the sea floor (z = h (x, y)).

M =

∫ ζ(x,y,t)

−h(x,y)

u (x, y, z, t) dz , N =

∫ ζ(x,y,t)

−h(x,y)

v (x, y, z, t) dz . (5)

The Euler equations (1) - (3), and the continuity equation (4) lead to the
following system.

∂M

∂t
+ (h+ ζ)

∂ζ

∂x
= 0 , (6)

∂N

∂t
+ (h+ ζ)

∂ζ

∂y
= 0 , (7)

∂ζ

∂t
+

∂M

∂x
+

∂N

∂y
= 0 , (8)

1.2 Reduction over a triangular mesh

Consider a triangular mesh over a region R with n nodes (xi, yi) (i =
1, 2, . . . , n), and and m elements (e1, e2, . . . , en). Suppose Φi (x, y) is a ba-
sis function associated with the node (xi, yi). That is, Φi (x, y) is continuous
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Figure 2: Basis function Φi (x, y).

over R and linear over each element, and satisfies the condition

Φi (xj, yj) =

{
1 , i = j ,
0 , i ̸= j .

(Figure 2).
Suppose that M (x, y, t), N (x, y, t), ζ (x, y, t), and h (x, y) are expressed
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in the following forms.

M (x, y, t) =
n∑

j=1

Mj (t) Φj (x, y) , (9)
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Substitution of those expressions into the equations (6), (7), and (8) leads to
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Set (x, y) = (xi, yi). Then equations (13) - (15) become
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Suppose that one of the vertices of element el is (xi, yi), and that the
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other two vertices are (xj, yj) and (xk, yk). Note that
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,

or

Φi (x, y) =
xjyk − xkyj − x (yk − yj) + y (xk − xj)

xjyk − xkyj − xi (yk − yj) + yi (xk − xj)
,

so that the partial derivatives of Φi (x, y) over the element el are given by
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.

The partial derivatives of Φi at the node (xi, yi) is determined by taking a
weighted average of the partial derivatives over the elements for which the
node is one of their vertices. Now standard ODE solvers are applied to the
system of ordinary differential equations (16) - (18).

2 Example of tsunami simulation

Numerical techniques described in the previous section are illustrate with an
example.

Example 1

Topographic data: Japan Hydrographic Association, Marine Information
Research Center, MIRC-JTOPO30, M1406, 2006/09/11, Ver. 1.0.1.

Range [m]: −300000 ≤ x ≤ 500000, −300000 ≤ y ≤ 300000.

Triangular mesh: 60501 nodes, 120000 elements.
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Figure 3: t = 0.

Initial surface displacement [m]:

z =

{
ae−[(x−xc)

2+(y−yc)
2] , (x− xc)

2 + (y − yc)
2 ≤ σ2 ,

0 , (x− xc)
2 + (y − yc)

2 > σ2 .

xc = 50000, yc = −120000, a = 10, σ = 20000.

ODE solvers: The Runge-Kutta method (the first three steps), the four
step Adams-Bashforth-Moulton predictor corrector in PECE mode.

Time step [s]. 1.0.
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Figure 4: t = 60.

Figure 5: t = 120.
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Figure 6: t = 180.

Figure 7: t = 240.
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Figure 8: t = 300.

Figure 9: t = 360.
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Figure 10: t = 420.

Figure 11: t = 480.
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Figure 12: t = 540.

Figure 13: t = 600.
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