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• Group algebras and modules

• Categories in representation of finite groups

• Actions of the Hochschild cohomology



Group algebras

• k field, e.g Q,R,Fp = Z/pZ,Fpn , etc

• G finite group, e.g. {1}, Cp
∼= Z/pZ, Cp × Cp, Sn, etc

• Group algebra kG : vector space with basis G , and
multiplication ‘induced’ by multiplication in G , i.e.

kG =

∑
g∈G

λgg | λg ∈ k


and ∑

g∈G
λgg

(∑
h∈G

µhh

)
=
∑
g∈G

∑
h∈G

λgµhgh
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Group algebras

Examples

(1) G = {1}, kG = {λ · 1 | λ ∈ k} and (λ · 1)(µ · 1) = (λµ) · 1.

Thus
kG ∼= k, λ · 1 7→ λ

(2) G = C2 = {1, a} with a2 = 1, kG = {λ · 1 + µ · a | λ, µ ∈ k},
and

(λ1 · 1 + µ1 · a)(λ2 · 1 + µ2 · a)

=λ1λ2 · 1 + λ1µ2 · a + µ1λ2 · a + µ1µ2 · 1
=(λ1λ2 + µ1µ2) · 1 + (λ1µ2 + λ2µ1) · a.

Thus

kG ∼= k[X ]/〈X 2 − 1〉, λ · 1 + µ · a 7→ λ+ µX
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Group algebras

(3) G = C2 and char(k) = 2 then kG ∼= k[X ]/〈X 2〉.

In general, G = (Cp)n = Cp × Cp × · · ·Cp and char(k) = p,
then

kG ∼= k[X1,X2, . . . ,Xn]/〈X p
1 ,X

p
2 , . . . ,X

p
n 〉

Observation: kG is commutative if and only if G is Abelian, e.g.
kS3 is not commutative
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Modules over group algebras

k field, G finite group, kG group algebra

• (left) kG -module: vector space M together with
‘multiplication’

kG ×M → M, (a,m) 7→ a ·m,

satisfying the ‘usual’ modules axioms, e.g. 1 ·m = m,
(a + b)m = am + bm, (ab)m = a(bm),
a(λm + µn) = λam + µan, etc

Example

1. The zero vector space (of dimension 0)

2. k is a kG -module with
(∑

g∈G λg · g
)
· µ =

∑
g∈G λgµ

3. kG is a kG -module with the usual multiplication
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Homomorphism of kG -modules

k field, G finite group, kG group algebra
M,N be kG -modules

• kG -homomorphism: k-linear map f : M → N s.t.
f (a ·m) = a · f (m) for all a ∈ kG , m ∈ M,

or equivalently f (g ·m) = g · f (m) for all g ∈ G and m ∈ M.

• Composition of two kG -homomorphisms is again a
kG -homomorphism, and

the class of all kG -modules together with kG -homomorphism
between them form a category, denoted by Mod(kG ).
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Definition of categories

A category C consists of

• a ‘class’ of objects Ob(C)

• a set of morphism HomC(X ,Y ) for each pair X ,Y ∈ Ob(C)

• a function, called composition

◦ : HomC(X ,Y )× HomC(Y ,Z )→ HomC(X ,Z )

(f , g) 7→ g ◦ f

for each triple X ,Y ,Z ∈ Ob(C)

satisfying certain axioms.

A ‘morphism’ between categories is called a functor
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Functor



Category of kG -modules

• Usual objective: Classify the indecomposable in mod(kG ).

Theorem [Krull-Schmidt]. Every f.d. module M in mod(kG )
can be decomposed uniquely into direct sum of
indecomposable modules,

M = M1 ⊕M2 ⊕ · · · ⊕Mn.

• In ‘ordinary representation theory’:
Theorem [Maschke]. If char(k) - |G |, every indecomposable
kG -module is irreducible/simple, i.e. kG is semisimple

• In ’modular representation theory’:
If char(k) | |G |, the group algebra kG is usually of ‘wild
representation type’, hence it is impossible to classify the
indecomposables modules.
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Categories in modular representation theory

k field, G finite group and char(k) | |G |
Fact: kG is f.d. self-injective algebra, hence projective = injective

1. Stable module category StMod(kG ) or Mod(kG )
• objects: kG -modules
• morphisms: HomkG (M,N) = Hom(M,N)/PHom(M,N),

PHom(M,N) = {f | f factors through some proj. ob.}

2. Derived category D(Mod kG ) of the module category
• objects: ‘complexes’ of kG -modules
• morphisms: equivalence classes of ‘roof’, i.e. M → X ← N

with N → X a ‘quasi-isomorphism’

3. Homotopy category of injective kG -modules K(Inj kG )
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Homotopy category of injectives

• Objects: complexes of injective kG -modules

where I n are injective kG -modules and dn ◦ dn−1 = 0.

• Morphism: chain maps (of degree 0) modulo null-homotopy
maps

HomK(Inj kG)(I , J) =
{chain maps I → J}

{null-homotopic maps I → J}
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Homotopy category of injectives

Theorem (Krause 2005)

There exists a diagram of six functors

satisfying some ‘nice’ properties.

Remark
The category K (Inj kG ) contains a copy of Mod(kG ) and two
copies of D(Mod(kG ))
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Homotopy category of injectives

• Aim: Study K(Inj kG )

• Plan: Give some algebraic structure on the set of morphism
between two objects

Benson-Iyengar-Krause theory (2008):
If R is a graded-commutative notherian ring ‘acting’ on
K(Inj kG ) then there is a ‘local cohomology’ functor

Γp : K(Inj kG )→ K(Inj kG )

for each homogeneous prime ideals p ⊆ R.
Define the support of an object X in K(Inj kG ) to be

suppR(X ) = {p ∈ Spech(R) | Γp(X ) = 0}.
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Some homological algebras

A an f.d. algebra over a field k and X ,Y A-modules

• an injective resolution of X is a complex of injective modules

iX = · · · → 0→ I 0
d0

−→ I 1
d1

−→ I 2 → · · ·

together with a map η : X → I 0 such that the sequence

0→ X
η−→ I 0

d0

−→ I 1
d1

−→ I 2 → · · ·

is exact.

• In particular, iX is an object in K(InjA)



Some homological algebras

• The n-th extension group Extn(X ,Y ) is

ExtnA(X ,Y ) = HomK(InjA)(iX , iY [n]),

where iX , iY are injective resolution of X ,Y , resp.

Thus, an element of ExtnA(X ,Y ) looks like:
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Hochschild cohomology

A an f.d. algebra over a field k , Ae the enveloping algebra of A
(i.e. (A,A)-bimodules = Ae-modules)

• M an (A,A)-bimodule. The n-th Hochschild cohomology of A
with coefficient in M is

HH(A,M) = ExtnAe (A,M) = HomK(InjAe)(iA, iM[n])

• The Hochschild cohomology ring of A is the graded ring

HH∗(A,A) =
⊕
n∈Z

HHn(A,A)

with multiplication defined using composition and shift.
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Hochschild cohomology

• If f ∈ HHm(A,A), i.e. f : iA→ iA[m]
and g ∈ HHn(A,A), i.e. g : iA→ iA[n],

then f · g is defined as the composition

iA
f−→ iA[m]

g [m]−−−→ iA[m + n]

in HHm+n(A,A)

Theorem [Gerstenhaber 1963]. The Hochschild cohomology ring of
A is a graded-commutative ring.

Theorem [Evens 1961, Venkov 1959, Ginzburg-Kumar 1993,
Friedlander-Suslin 1997]. The Hochschild cohomology ring of A is
noetherian.
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The Action

k field and G finite group, A = kG

• Idea: Use tensor product over A
If X is an (A,A)-bimodule and M an A-module, then X ⊗A M
is an A-module.

• Extend to tensor product on the homotopy category:

−⊗A − : K(ModAe)× K(ModA)→ K(ModA)

• Restrict to the homotopy category of injectives

−⊗A − : K(InjAe)× K(InjA)→ K(InjA)
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The Action
A = kG , K = K(InjA),

Hom∗K(X ,Y ) =
⊕
n∈Z

Hom∗K(X ,Y [n])

• Apply the bifunctor to the morphisms, get:

HH∗(A,A)× Hom∗K(X ,Y )→ Hom∗K(X ,Y ),

where a ‘homogeneous’ pair f : iA→ iA[m] and g : X → Y [n]
is mapped to

X ∼= iA⊗A X
f⊗g−−→ iA[m]⊗A Y [n] ∼= Y [m + n]

• Get (graded) HH∗(A,A)-module structure on Hom∗K(X ,Y ) for
each pair X ,Y ∈ K = K(InjA).



The Action
A = kG , K = K(InjA),

Hom∗K(X ,Y ) =
⊕
n∈Z

Hom∗K(X ,Y [n])

• Apply the bifunctor to the morphisms, get:

HH∗(A,A)× Hom∗K(X ,Y )→ Hom∗K(X ,Y ),

where a ‘homogeneous’ pair f : iA→ iA[m] and g : X → Y [n]
is mapped to

X ∼= iA⊗A X
f⊗g−−→ iA[m]⊗A Y [n] ∼= Y [m + n]

• Get (graded) HH∗(A,A)-module structure on Hom∗K(X ,Y ) for
each pair X ,Y ∈ K = K(InjA).



The Action
A = kG , K = K(InjA),

Hom∗K(X ,Y ) =
⊕
n∈Z

Hom∗K(X ,Y [n])

• Apply the bifunctor to the morphisms, get:

HH∗(A,A)× Hom∗K(X ,Y )→ Hom∗K(X ,Y ),

where a ‘homogeneous’ pair f : iA→ iA[m] and g : X → Y [n]
is mapped to

X ∼= iA⊗A X
f⊗g−−→ iA[m]⊗A Y [n] ∼= Y [m + n]

• Get (graded) HH∗(A,A)-module structure on Hom∗K(X ,Y ) for
each pair X ,Y ∈ K = K(InjA).



Main Theorem



Conclusion and Outlook

• The Hochschild cohomology ring acts on the homotopy
category of injective kG -modules

• Since the stable category and the derived category is
‘contained’ in the homotopy category of injectives, we get also
actions on both categories (for free)

• The above action can be generalized to arbitrary f.d.
self-injective algebra over a field k

• Using B-I-K’s machinery, get local cohomology functor and
support theory for all categories above

An open problem:

• Does the above action generalize to arbitrary f.d. algebras?
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Thank You!


