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Chapter1  Flux and divergence

If a physical quantity is being transferred, the — V

flux is the amount passing per second trough a — .

window of one unit area perpendicular to the flow. = "

I'f the arrows indicate the (local) velocity v of f,/:"

the flow, the flux is just the contents of the box | Y

spanned by the window and the velocity vector. = *
../’/ :b

Examples: the mass flux is pv, the heat energy
flux is hv (with h the energy density), and the volume flux is just v.

If the area is not unity, but A, the flow per second is the flux times A.



If the area is not unity, but A, the flow per second is the flux times A.
And if the window is not perpendicular to the flow, a factor cos a. enters:

Volume = A' x length of v= A cos a x ||

Volume = A x perpendicular component of v
= AxVcCosa

Avcosa=A v.n, nnormal to the surface

(1)



The flux through a general surface is an integral:

If S is a closed surface,

surrounding a volume V,
this integral is the ™
net outflux out of V.

When divided by the volume,
we get the average outflux density in V.

In the limit for V -> O, this becomes the local outflux density,
and we call it the divergence of the vectorfield v:

divv = lim v-n dA (2)

e

V-0 vV




If the quantity that is transferred, cannot disappear into nothing, cannot be
compressed or expanded, we expect the flux integral over the closed surface S to be
zero: “what comes in goes out”, and the net outflow is zero. If this integral would
have a positive value, then there is production of the quantity inside the volume, at a
rate equal to the net outflux per second, and the production density (production per
unit volume) is given by the divergence of the flow field. (see the yellow box)

In a divergence-free field,
the flux integral over any closed surface is zero. (3)



chapter2  Gradient and directional
derivative

Let f be a scalar function in 3-dim. space, x° a point, and

let f(x°) =: ¢ . All x with f(x) = ¢ make a surface in space.

In x° choose a local coordinate system, two axes tangential
to the surface, the third one, the r-axis say, perpendicular.
Let n be the unit vector along the r-axis.

Then f is a function of r only: f=f(r),
and the first order behavior of f in x°
is fully known by the value of df/dr at
r=0, [i.e. at x°], and the direction n,
that is: by the vector f*(0) n. This
vector is what we call the gradient:

grad f (x°) = f'(r=0)n | (4)




Ix Qr'ﬂd 08 =4 (r:O) n ‘ (4) \y &

The gradient of a scalar function f is the vector
pointing into the direction of steepest increase
with modulus equal to the value of this increase.

The derivative in any other direction w
is smaller in modulus, involving the cos
of the angle in between w and n :

‘a wf = wegradf| (5)

In particular, the derivative in the direction




o, T
In particular, the derivative in the direction

of e1, the first basis vector, denoted by 91,
is what we get when choosing w = es:

wegradf  (5)

2
2,f —;f—eligr‘udf 72

In words: the first gradf = |3 ,f
component of grad f s £
is d1f . Similar for -y
2 and 3. So in total: 3 Z




Motivations for chapter 1 and 2:

In most textbooks the operators grad and div (and curl) are defined in terms
of partial derivatives with respect to the three cartesian coordinates; and then
certain properties of the operators are shown. But in fact, grad, curl, div are
coordinate-free concepts, as we have shown: we first defined the concepts,
only later we introduced the cartesian coordinates, and we saw that they take
the familiar form in terms of partial derivatives.

It is just a different, more physical way of looking at the material.



Chapter 3 Laplace Equation (divergence-free gradient fields)
and stationary heat flow as a physical example

From now on, all our material (Laplace Equation, physical interpretation of the
boundary conditions, discretization formula’s and numerical treatment) will be
illustrated by the example of stationary heat flow in a thermally conductive

medium.
We will work with the following quantities.

The temperature field u is a scalar field such that u(x,y, z) denotes the
temperature in the point (x, y, z).

The heat flow field ¢ is a vector field (therefore we use bold face), such that
@(x,y,z) is a vector with the direction of the heat flow in the point (x, y, z),
and with length (magnitude) equal to the amount of heat that per second
passes through a virtual window of unit area, positioned at (x, y, z) and
perpendicular to the direction of the flow (see previous section).

This quantity is called the flux at (x, y, z).



At this moment it seems we have two unknown fields: the scalar field u, and the
vector field ¢, which is equivalent to three scalar fields, so in total we have four
unknown scalar fields. Fortunately this complexity is immediately reduced to
only one scalar field, by Fourier’s Law, which says that in stationary situations

p(x,y,z) = —A grad u(x,y,z) (6)
that is:
- in magnitude, the heat flux vector is proportional to the local gradient of
the temperature field
- while the direction of the heat flux is opposite to the direction of the
temperature gradient, that is: in de direction of steepest descent.
where A is a positive factor, a material constant, called the conductivity.



Referring to earlier discussion of divergence we have:

div(e(x,y,z)) = f(x,y,2), (7)

where f(x,y,z) isthe production density, that is: the amount of heat that is
produced per second in a unit volume at the position (x, y, z). If thereis no
heat production, i.e. f = 0, then the divergence (7) is zero, and we say that @
is a divergence-free flow field.

To illustrate the concept of heat production we can think of a block of material, in the interior of
which an electrical wire is producing heat. This is not an ideal example: due to the presence of the

wire the assumption of a homogeneous medium is no longer satisfied. Another example: consider
a heap of mowed grass (e.g. meant as food storage for cattle), in which a fermentation process
takes place everywhere, creating heat. This heat will find a way out through the surface of the
heap, and in stationary situation we have equation (7).



p(x,y,z) = —A grad u(x,y,z) (6)

div(e(x,y,2)) = f(x,y,2), (7)
Now combining eqgs (6) and (7) we get
div(& grad u(x,y, z)) = —f(x,y,2), (8)
: 0?u . 0%u . 0%u 1 . .
thatis:  ——+ 357 t— = —3 f(x,vy,2) Poisson Equation (9)

In case of no heat production inside the domain, the right hand side is zero, and
we have:
d%2u  0%u = 0%*u

oz T2t oe = 0 Laplace Equation (10)




&
n d

Definition: a second order PDE in n coordinates: ij=10ij 33—
g ! X ":’,'J.

u + lower order terms = f, is

elliptic if the matrix A formed by the coefficients {aiu,-}, i,j = 1,..,n, is positive definite
When these coefficients [air}-} are functions of the coordinates, ellipticity of the equation may be

confined to only a subset of R™. We will not go further in this matter, but we just note that for the
Poisson or Laplace equation the matrix A is the identity matrix, which is clearly positive definite.



Chapter 4 Boundary conditions

In boundary value problems for second order ordinary differential equations
we know that we need conditions at the boundaries (that is: at both ends of
the interval, one condition at each end) and these conditions may involve the
value and/or the derivative of the unknown function. Similarly, for two- or
three-dimensional second order partial differential equations of elliptic type
we need conditions all along the boundaries of the domain, and these
conditions may involve the unknown function u itself and/or its first order
partial derivatives.



For the first boundary condition: u is given at the boundary, we can imagine that we keep the boundary
at a fixed temperature, by pouring water over it from a container that is maintained at that temperature.

Concerning derivatives occurring in boundary conditions we can distinguish between derivatives in

tangential directions and in normal direction. The latter, i, the derivative in the direction of the

du

outward normal n, is the most occurring one. In the first place, because = 0 is the condition for

perfect insulation: no flow through the boundary implies that the normal component of ¢ is zero, and

then, by (6), we have z_: = (. In the second place, because if the tangential derivative(s) would have

been given as boundary condition, we can simply integrate them along the boundary to find a condition
for the function u itself. For instance, if in a two-dimensional problem the tangential derivative is given
to be zero at the boundary, it means that u is a constant all along the boundary. (The value of this
constant seems to be unknown, but generally it follows from another condition, e.g. from conservation
of some overall quantity.)



From the above, we can expect that there are three standard types of boundary

ou

conditions: one about u, one about P and one about a (linear) combination of

du : :
u and Pt All three can occur in one problem, but each one along different

parts of the boundary, and every part of the boundary must have one boundary

condition.
These three types have the following names:

1. Dirichlet boundary condition: the value of u is given in all points of that
part of the boundary. Along the boundary a function g, is given (e.g. an
expression in terms of coordinates defined along the boundary), and along
the boundary the solution u is required to coincide with this function:

u=Jg. (11)




2. Neumann boundary condition: the value of the outward normal derivative

ou . . . .
= s set equal to a given function g, of coordinates along the boundary:

on 3

u
a — gz. (12
. Robin boundary condition: a certain linear combination of u and its norma

: . d : :
derivative ﬁ must be equal to a given function g5 along the boundary:

du
- tau= gs, (13

where the factor a is positive and may also be function of the coordinates

along the boundary.
A detailed derivation of this condition by modeling the physical situation will be given later.




Chapter 5 The heat conduction problem
in a two-dimensional L-shaped domain

In the x, y-plane we consider an L-shaped domain as in figure F1

The physical reality may be a thin flat heat conducting plate having this geometry, lying on an insulating
sheet and also covered with an insulating sheet, such that heat flow can only be in x- and y-direction.

4= Alternatively, we can think of \ ; ’_,,f>'

an infinitely long beam with

this L-shaped cross section, |
with z-invariant boundary | 1k

conditions: then the solution | 1B

is also z-invariant and can be
studied in any cross section.




We assume no internal heat production: f(x,y) = 0, so we have the Laplace

2 2
Equation: E—I—a—u =0 (14)

dx2  9y?
We apply the following boundary conditions.

On top, at y = 2, the temperature is given to be a constant, and higher than

the room temperature. Let us say
u(x,2) = 100°C. (15)
This boundary condition is of Dirichlet type.

In the laboratory it can be realized by pouring boiling water over this top surface. In fact we can realize
any other value of the boundary temperature if we pour the water from a container which is monitored

and controlled at that temperature.



Along the L-shaped boundaries we have an insulated wall: there is no heat
flowing through it, so the flow is tangent to the boundary. Mathematically:
the flux ¢ has zero normal component. Then, in view of Fourier’s Law (6), ‘

: . 2 Ju
the normal derivative of u is zero: = 0. (16)
(On the vertical parts of these two J | fixed temsp.
boundaries the normal derivative ? A
is the x-derivative, and on hori- 1/ o)
zontal parts it is the y-derivative.) / e
This condition (16) is the most / N
simple and most frequently I?-j,r " W
occurring example of Neumann A W %
e P4 S
boundary condition (12). | # \ Yy g
. I//' \ W - S ]B'FETE
The Neumann boundary condition — = W \ S . ontftow
an (/ “ ~ e,
g> with g, #+ 0 does not occur so / = —
frequently; and also it is harder to imagine |.Z T
how it is realized in the laboratory. This is ';/ / S sz "
certainly so for g, < 0, in which case a ‘?/’“7//// /////// /) ///x/

certain outflux is prescribed. For positive
go , i.e. when an certain influx is specified, f‘mgmatesd
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certainly so for g, < 0, in which case a F{_/L/////fi{;{/{z_Mz
certain outflux is prescribed. For positive 2 '

g, , i.e. when an certain influx is specified, Thsulated

we can be more successful. E.g. we may think of operating the boundary with heaters and radiators with
known power, sending focused heat towards the boundary. However, part of this heat will be reflected
at the surface, and how do you know how much has really gone into the material? Maybe the following
alternative is more effective. On the boundary surface we lay a fine wire netting (kawat kasa) and we
make it glow by an electrical current. The electrical power can of course be controlled, and if we cover
this netting with an insulating layer, the heat that is produced will totally be conducted away from the
boundary into the material, and in stationary situation this heat influx is equal to the power per unit
area.



At the right hand boundary we have free outflow of heat to the environment.
In order to come to a mathematical form of this boundary condition we
imagine that the heat is taken away from the boundary by air molecules
colliding with surface molecules: during collision they exchange heat energy.
With this new energy the air molecules move away from the surface, having
further collisions in a stochastic way known as Brownian motion, thus
contributing to a temperature profile that more or less looks like in figure F2.

Eemp. U "2 The steady outflow of heat
into the environment will
\ cause a slow but never ending

aw increase of this profile. We are
not going to calculate this
Ueny.  Processin detail; we only seek
a way to incorporate the
outcome of the process into

%< the boundary condition.

material




(2 The steady outflow of heat
into the environment will
cause a slow but never ending
increase of this profile. We are
not going to calculate this

Ueny.  Process in detail; we only seek

a way to incorporate the

outcome of the process into

%< the boundary condition.

A standard way to model this
profile is thin film theory: along the boundary there is a thin film of air, in which
the temperature decays from u, down to u,,,,,, while the environment outside
the film, called the bulk, absorbs all heat that is transferred across the film (and
we are not interested in what exactly happens there).

So over the film there is diffusive heat transfer, it is stationary and constant
over the film, and is governed by the (still unknown) physical data: conductivity
of the air, say u, and film thickness, say 6. The heat flux, say 1 (scalar: only an x-
component), is by Fourier (6):

alr
material

xX= 2

Y= —p - (17)

o



1][) =—pu ueng_us (17)

(check: positive). Now this 1 must be equal to the heat flux arriving at the
surface from inside the material, which is, also by Fourier:

G,
¢ = A= (18)
Equating (17) and (18) we get:
ou i I
A Ix + s Us = 5 Uenv (19)
This boundary condition is of type Robin, (13) with a = % and g; = a u,,, .

Remark. Both 6 and u are (very) small, when compared to the corresponding
quantities in the material, but only their ratio /8 plays a role, and its value is
not necessarily very small or very large. It has to be determined experimentally.

Remark. Eq (17), stating that the outflow is proportional to the temperature
difference between material and environment, has already been proposed by
Newton and is known as Newton’s Law of cooling.



Chapter 6 Discretization of the Laplace Equation

Discretization of a problem that is formulated for a continuous function u(x, y)
of two variables x and y on a certain domain, means that we will be satisfied if
we can find an approximation of its function values in a finite number of points
in that domain. So we first define these points, and in two dimensions it is an
obvious choice to take them as the nodal points of a rectangular grid; to keep it
simple, we take a uniform grid, that is: all steps in x-direction have the same
length, say h,, and all steps in y-direction have the same length, say h,,; finally
we even take h,, = h, = h. So the x-values of the nodal points are x; =i h,
the y-values are y; = j h, and the approximations that we are going to find for

the solution u(x,;, yj) in these points, we denote with subscripts: u; ;.



y These u; ; are the unknowns of the

Dirichle so-called discretized problem that we
U now will derive: we construct a set of

; algebraic equations involving the
jse—r—x—x—a , discrete variables Ui j» such that

& | the solution of this set reflects the
1'_'5;-(**_ behavior of the solution u(x,y) of the
. continuous problem. These algebraic
* equations can be written in matrix

* form, and from Linear Algebra we
'iH know that (a) it is wise to have as

\.‘\\\

many equations as we have unknowns,
and that (b) we will have a unique

solution if the matrix of the system
has nonzero determinant.




- torm, and from Linear Algebra we
know that (a) it is wise to have as
many equations as we have unknowns,
and that (b) we will have a unique
solution if the matrix of the system
has nonzero determinant.

Therefore, to satisfy (a), we start by identifying the unknowns; or rather:
identifying all nodal points (xi,yj) where the value of u is unknown. These are:
all interior nodal points, and quite some of the nodal points on the boundaries:
in fact, all nodal points except those on the Dirichlet boundary y; = 2 (because
Dirichlet means: their values are known.) This set of nodal points we name D.

Secondly, we count the pointsin D: 1,2, ..., n.

Thirdly, in each of these nodal pointsin D we now construct one equation.
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Interior nodal points "?'-U

By interior nodal point we mean a point P = (x;,y;)

in D such that each of its four closest neighbors ; 4P iy
I = (xi+1ryj)! U= (xiryj+1)! B = (xi—lryj) and

§ = (x;,yj—1) arealsoin D. See figure(5). Using |

the Taylor expansion in the center point P, we can 'i .

write for u(T):

w(T) = u(P) + R (P) + *h2 2% (P) + *h3 25 (P) + Zh* ZE(P) +... (20)

and similar for u(B):

u(B) = u(P) — h@(P)+tha“(P)—gh3a“'(P)+£h4 L) —... (22)

Adding up we get:
w(T) + u(B) = 2u(P) + hzf” L(P) + Eh’* L)+ . (22)



zau 4311

u(T) +u(B) = 2u(P) + h*— (P) + Eh - (P)+ . (22)
Similarly in y-direction:
w(U) + u(S) = 2u(P) + hzgi;(P) + 1—12h4a ~(P) + ... (23)

Adding up (22) and (23) we find:

w(T) + u(U) + u(B) + u(S) — 4 u(P) = h? (— + —) (P) + O(h%) (24)

dx2

4 . - )

This leads to the important conclusion, the basis of elliptic numerics:

the linear combination % [u(T) +u(U) + u(B) + u(S) —4u(P)] |(25)

0%u

. P . . azu
isan O(h“) accurate approximation of (axz + ayz) (P)

- /




u(T) +u(U) +u(B) +u(s) - 4u(P) = h* (5 + —) (P) + O(h*) (24)

dx2

the linear combination é [u(T) + u(U) +u(B) + u(S) —4u(P)]

0%u

. 2 . . azu
isan O(h“) accurate approximation of (axz + ayz) (P)

-

This leads to the important conclusion, the basis of elliptic numerics:

~

/

02u 92u

Applying (24) to the Poisson Equation —+— = — % f(x,y) we see

0x%  0y?

that u satisfies hiz [u(T) + u(U) + u(B) + u(S) —4u(P)] = —% f(P)

within O(h?) accuracy.

(25)

(26)



Now we come up with the unknowns of the discretized problem. First a matter of
notation: instead of indices i,i £ 1,j,j = 1 in subscript, we can as well use a
letter index referring to east, north, west and south: for the central point u; ; or
up , the point east of it: u; 4 j oruy, north:u,; ;4 oruy, west:u;_4 ; orug,
and south: u; ;_4 or ug.

Now, in view of (25) we require these five unknowns to satisfy the equation

hiz[uT+uU+uB+us_4uP] = = %f(P) exactly. (27)



hiz [u(T) +u(U) + u(B) + u(S) —4uP)] = —% f(P) within O(h*) accuracy. (26)

hiz[urf +uy +ug +ug —4up| =— % f(P) exactly. (27)
. ) 0%u . 9%u . .
Applied to the Laplace Equation ™) + 32 = 0, we will have instead of (26)
and (27):

é [u(T) + u(U) + u(B) + u(S) — 4 u(P)] = 0 within O(h*) accuracy. (28)

and the numerical unknowns exactly satisfy

1

E[HT+HU+ILB+HS—4HP]= O (29)
In case of the Laplace equation (like our model problem) we can omit the factor

- Finally, we will change the minus sign to have a positive coefficient in the
center point, so we will work with the equation:

4HP_HT_HU_HB_HS=O (30)



An often seen representation, referring to the geometry of the connection, is
the following

.o =1 .
[—1 4 —1] u = h*f or 0, respectively (31)
A
and is called: stencil, or molecule.



The equation (30), as we already said, can be applied in each interior point of D.
Written in a matrix, all these equations have 4 on the diagonal, and four entries
—1 elsewhere in the row. Where exactly, depends on the order in which we
number the points. Commonly we follow the way we read a text: starting in the
upper line, going from left the right, then one line down, again left to right, etc.
For interior points that have one neighbor on the Dirichlet boundary, the value
in that neighboring point is given, so it moves to the right hand side, and the
equation now relates the central unknown with only three neighboring
unknowns:

4up — ur —ug — us = g,(U) = 100°C
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around the
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of the Lapl
boundary:




Now for nodal points on the insulated boundaries we implement the Neumann
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boundary condition (12) in the molecule. Note that the
Neumann boundary condition is about the (normal)
derivative, and not about the value of the temperature
itself. So the value in a Neumann boundary point is an
unknown, and we need to construct an equation for it.

Let P be a nodal point on the left boundary. The
continuous solution u is in this point P still perfectly
differentiable in y-direction, so (23) applies also here.



But differentiability with respect to x is only in positive x-direction, so we have

(20) but we cannot use (21) for eliminating the first derivative 3—2 (P). However,

this is precisely the derivative that is given by the Neumann condition; in our
case itis 0. Therefore, besides (23):

w(U) +u(S) = 2u(P) + hzzi;(P) + 1_12h4 oTu ~(P) + ... (23)
we have:
() = u(P) + T2 25 (P) + 3L (P) + =h*Z5(P) + ... (32)
Multiplying the last equation with 2 and adding it to (y2 23b we find
= [2u(T) + u(U) + u(S) — 4u(P)] = (% + E)(P) + —h?3 ou — (P) +...(33)

3
where we have already used that ou (P) = 0 (whyis thls'-’) so that the
accuracy is still 0(h?).



L 12u(T) + u(U) +u(S) — 4u(P)] = (s + TH(P) + L2 24 (P) +..(33)

dx2

where we have already used that o’u (P) = 0 (whyis thls?) so that the
accuracy is still O (h?).
The equation for the numerical unknowns becomes:

dup— 2Uur —uy—us =0 (34)
Written as a molecule:

-1 .
[- 4 —Z]H =0 (35)
- —1

Comparing with (31) it looks like the missing point at the left is “folded” over to
the right (mirroring symmetry).



For the Neumann point just under the Dirichlet boundary, see Fig. F3 top left,
the value of u(U) is given and goes to the right hand side; so that the stencil

becomes:
[- 4 —2] u = u(U) (36)
. =1 :

and in the lower left corner, see again Fig. F3, we have double symmetry:
.= .
- 4 =2lu=20 (37)

In the point (x,y) = (1,1) we meet a difficulty: the solution u of the continuous
problem is not differentiable in that point, so we cannot use Taylor expansions.
We will discuss this later. If you want to write a computer program now, then
for the moment you may just simply assume that in this corner point P the

value of up is the average of uy and uy .



Finally we implement the Robin condition at the right boundary (the outward
normal is in positive x-direction). We write (19) in the form

G, .
£+au=auenv with cr=;—§>0 (38)

This may look like the most difficult condition of the L
three, but after what we have already seen about the | =)(U -' -
numerics of the Neumann condition, it will go e
smoothly, as follows.

We start in a nodal point P, not being a corner point, BJ(— J(F L
that is: its coordinates are (2, y) with 0 # y # 1. In | SN
y-direction we then still have (23), and in x-direction AR
we only have (21) from which we eliminate the first X'I'\S. Sl
derivative by substituting the boundary condition e
(38):




zau 481.{

u(U) + u(S) = 2u(P) + h*—(P) + Eh - (P) + ... (23)

u(B) = u(P) — h2= (P) + tha“(m— Ef13"3“‘**"’(1:')+ 4h4a () —... (21)

ou . : _
—tau= aue, with a = M>0 (38)

u(B) = u(P) — h( —a u(P) + a u) + 1p2 2

= (1+ ha)u(P) — ha u,,, + ” h2 0%u (P) +

Multiplying with 2 and adding up to (23) we flnd.

2u(B) +u(U) + u(S) — (4u + 2ha) u(P) =
—2ha Upy, + hz(%-F —)(P) + 0(h*).

(Exercise: is the exponent 4 in O(h*) correct?)



2u(B) +u(U) + u(S) — (4u + 2ha) u(P) =
—2hat Upy,, + hz(%+ %)(P) + O0(h*).

and the equation for the numerical unknowns becomes:

(4 4+ 2ha) up — uy — 2ug — ug = 2ha u,,, (40)
In stencil:
: 1 :
[_2 4 + 2ha ] u = 2ha u,,, (41)
—1 .

In both corner points of the outlet we have to implement
the insulation: one of the two entries —1 in the molecule
will be folded (or mirrored) on to the other, so making it

—2, like in (35), but there the mirror was vertical, now HFS '
horizontal. For the case as in the adjacent figure we find: "

(4 + 2ha) up — 2ug — 2ug = 2ha u,,,




A note to make here is that the central coefficient 4 4+ 2ha is, in modulus,
larger than the sum of the moduli of the other coefficients in the molecule.
Then the matrix is so-called diagonally dominant, which ensures a unique
solution. (We will not further discuss now.)



Chapter 7 Discretization derived through box-integration

In the previous chapter we have derived the discrete problem by approximating the second
order derivatives by linear combinations of neighboring temperature values, to the best
possible accuracy (given that only four neighboring points participate; if we allow for bigger
“molecules” the accuracy can of course be higher). In doing so, the focus of our analysis
was on pointwise behavior. But what can we say about the behavior or accuracy in between
the nodal points?

And what is the relation with the physics? E.g. what will we answer when we are asked:
how much is the total heat flow through a cross section? We might do a calculation at the
outlet: the heat flow through the outlet is an y-integral of the x-derivative of temperature,
so having the solution of the discrete problem we may apply numerical differentiation and
then numerical integration. But will we get the same answer when we do these calculations
at the inlet? Or over any cross section in the interior? Ya, we know that if we take finer and
finer grids, more and more nodal points, more and more work, the accuracy will become
higher (mathematically speaking: the truncation error will decrease).



Instead of deriving discrete formulas for a problem formulated in second order derivatives,
we now go back to the formulation in first order derivatives, which is closer to the physics.
The physical law of Conservation of Heat says that the net outflow of heat from any closed
surface in the domain is zero. Here, in 2D, it is of course about contours instead of surfaces:

N
(42)

The net outflow of heat from any closed contour in the domain is zero,
where the net outflow from the contour is the integral of the normal flux,
and the normal flux is —A times the normal derivative of the temperature u.
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U Like in Chapter 6, we start with a nodal point
P = (ih,jh) in the interior of the domain D.
Gk 6 | Now in order to derive an equation for the
Ui Ak S 1"' s e "i"_ discrete unknown up in relation to its neighbors,
y=it |B i kP 1=<M *T we apply this physical I.aw.c}n a contour around
’ ‘ : P, a ?quare cnnt'eurlwmh its edges ar:ulnr;g the
j:ff‘ifij_____g. _______ 1E four lines x.= (Lia)h a.nd y=(ji5)h. So
.* ', the contour integral consists of four parts; we
| s ! start with the eastern part: the line EF. The
1 ‘ integral of the normal flux is, in second order
({,-éji (e In accuracy, approximated by the flux in the
X =in midpoint M, multiplied with the length of the

edge, which is h. And then: the normal flux in M is in second order accuracy approximated
by A(up —ug)/h. So this first quarter of the integral is just: A(up — ug).



Similarly, the outflow to the north is in second order approximated by A(up, — uy), to the

west by A(up — up), and to the south by A(up — ug). And the sum must be zero, so
(omitting the factor A) we simply arrive at the well know relation:

4‘up_uT_uU_uB_u5=0 (43)

Now, in an interior point just under the Dirichlet boundary, the value of u is given and will
be moved to the right hand side, as we already saw in chapter 6, formula (30):

4 HP — uT — HB — HS — gl(U) — 1OUDC (30)



Now we will go over to nodal points on the insulated boundaries. Here the homogeneous

Neumann condition applies: M . (16)
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We choose the point P to lie on the boundary x = 0, and we
draw a rectangular contour around it: we cannot make it a full
square, as half of it would lie outside the domain; so we have only

half a square: three edges along the three lines x = (i + %)h and

y = (j + %)h , and the forth edge is along the boundary. This last
edge the outflow is zero, by definition: it is insulated. The east
edge has, as we saw earlier, an outflow equal to A(up — uy).
The outflux integral over the northern edge is the length of the
edge -h multiplied with the flux which is —A(uy —up)/h, so
the contribution to the integral is ZA(up — uy). Similarly for the
southern edge: is A(up — ug). In total, omitting the factor 4,
we find the relation:

ZHP—HT_%HU_%HSZO (44)

This is equivalent to (34), they only differ by a factor 2.



And if we have P in the corner (x = 0, y = 0) then the contour is only a quarter of the
original square. Two of its edges are insulated: the west and south edge; over the east edge

the outflow is —h A(uy —up)/h =.- A(up —ur), and similarly over the northern edge
=~ A(up — uy), soin total we find the relation

uP - %HT - %H’U — 0. (45}

This is equivalent to (37), but for a factor 4.
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Finally we consider the outlet boundary. Here we have the

Robin condition

ou
4 72

K U
T E Ug = E Ueny (19)

Consider the rectangle in the adjacent figure. The outflow
over the western edge is, just like for interior boxes:

.1 .
A(up — up), over the northern edge: - A(up — uy), and

1

over the southern edge: - A(up — ug). Of course the most
2

interesting thing is the expression for what is going out over
the eastern edge. The outward normal derivative there is in

I _J

X
LG

o ——

positive x-direction, so the outflow is approximated by the length h multiplied with the flux
atP: —hA 3—2 (P) = [by(19)] =—h %(—up + U,,,,). The total over the four edges is:

A(2up — Uy — Ug — %us) + h %(up — Uppy) =0
Or, dividing by A and writing % = @, weget:
(2+ah)up —suy —up —sus = ahugyy,

which is equivalent to (40) but for a factor 2.

(46)



In corners with the insulated wall, we have only one quarter of the standard box. Let us
consider the corner (x,y) = (2,1). Compared to the previous box (last figure), the point U
is absent, and the vertical edges are only half. So along the boundary BP we have no

I 1
contribution, over the half west edge we get: —/'l(up — u,B) over the southern edge:

%A(up — Ug ), and over the (half) outflow edge: ——h /1 — (P) = ——-’1 'u( —Up + Ugpy)-
Altogether:
AMup — “up — %1;,5) + -h %(up —Ugpy) =0  or:

Ne wmaa T S

(1+ %‘Ih) Up — %HB — %HS — %‘Ih Ueny (47)

Compare with (41a): again only a factor difference, now factor 4. | ]
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Finally we address the inward corner.

After all types of boxes that we have seen
already, we easily read the formula from the
figure:

%L{U + Upg 4= Ug + %H’T = SHP = (48)



Chapter 8 Discussion of the box integration

Here we look back on what we have done (we “reflect”), and we share a few thoughts.

A mathematical aspect: for the approach using Taylor expansions, our functions must be
twice differentiable in the interior; in the box-integration they need only be differentiable
once; and even less: it is sufficient if their derivatives are integrable.

A physical aspect: in box-integration we in fact have a direct numerical model of the physics
(the yellow line in the figure below; | remembered this figure from earlier workshops, but the yellow

line | added just now, as | realize this representation precisely describes what | want to say).



Physics, Mathematics and Numerics

~ Calculus
" Fourier anal.
— Laplace trafo
~— Sep. of var.
~ Functl anal.

interpretation

~~modelling
discretisation

—  Num. lin. alg.
—— Maple, Matlab
—— Own programs
~ Math.cal proofs



Yes, a direct numerical model of the physics, because in fact we redefine the physical
guantities: we have defined the outflow over an edge as the normal flux in the midpoint
times the length of the edge; we have defined the normal flux in the midpoint as the
temperature difference between two points on the normal vector, on either side of the

edge, at %h distance, and then multiplied by A. Adopting these definitions, our model

satisfies conservation of heat in every square or half square or other type of box, and as a
consequence, the total flow through any cross section is the same, and this holds not only
for straight cross sections, but for any path that is made up from box edges, and that is
running from one insulated boundary to the other. And of course we have conservation of
heat within any domain made up of a collection of (adjacent) boxes, and ultimately we
have heat conservation over the total domain.



A numerical aspect: when deriving the box-integration formula for each type of nodal

point, we have seen that they were equivalent to the result by Taylor expansions:
sometimes they differed by just a factor 2 or 4. Following Taylor expansions we more or less
automatically arrived at formulas with coefficient 4 in the central entry point P, and it has
some charm to see a matrix diagonal having all entries equal. However, the matrix built up
by box-integration is automatically symmetric, which is a welcome property in computer
work: it not only saves storage (in this case some 40%), but procedures for matrix solving
are often quite faster for symmetric than for non-symmetric matrices.



Chapter 9 Analysis of the singularity at the inward corner

To analyze the behavior of the solution around the corner point (x,y) = (1,1), we use
polar coordinates r and 8. Let 6 be counted from thelinex =1,y > 1. The Laplace

. o2 29 _ -
Equation takes the form: r = ('r P u(r, 9)) + 030 u(r,0) = 0. By separation of
variables, that is: by trying a solution of the form u(r,8) = R(r) - 90(8),
we find R(r) = r™ and 0(8) = cosm8 forreal m > 0, where we do not include sinm®,

so that u(r, ) already satisfies the Neumann condition z—i = 0 along the boundary 6 =
0. The Neumann condition along the boundary 8 = %ﬂr selects the admissible values
of m: m X %ﬂ.’ must be a multiple of T and so: m = %k fork =0,1,2,3,..,sothatm =

2 4 : : . . .
0, 3 3 2, ... In this way we find the first four terms of the Fourier expansion:

u (r,0) =1, uy(r,0) =r?3cosze, us(r,0)=r*3coste, u,(r,0)=r2cos20






Now we fit the first four terms of the expansion

u(r,0) = a; + a, r*/3cos2e + asr*/3 coste + a,r?cos20
to the five nodal values, the valuesin P,U,B, S, T:

up = u(0,8) = a,

uy = u(h,0) = a; + a, h*/3 + a3 h*3 + a,h?

Ug = u(h,g) = a, +%:12 h?/3 —%ag h*/3 — a, h?

us = u (h,m) = al—% a, h2/3—%a3h4f3+ a, h*

Ur = u(h,%n) = a, — a, h?® + a;h*3 — a, h?
We see that uy + u; = 2a, + 2as h*/?3
and up + us = 2a; — as h*/3

so that by eliminating a; wefind uy + ur + 2up + 2ug = 6a; = 6 Up



To our surprise this is identical to (48), the result of the simple box-integration.
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