UNYESTIAS ANDALAS

Module Description/Course Syllabi

Study Programme : Magister of Mathematics Faculty of Mathematics and Natural Sciences. Universitas Andalas

1. Course number and name

MAT82231 Statistics Theory

2. Credits and contact hours/Number of ECTS credits allocated 3 / 4,50 ECTS

3. Instructors and course coordinator

1. Prof. Dr. Ferra Yanuar, M.Sc

4. Text book, title, outhor, and year

a. Roussas, G. 2003. Introduction to Probability and Statistical Inference. Academic Press.

b. Hoog RV , McKean JW, Craig AT. 2005. *Introduction to Mathematical Statistics* 6 th *Edition*. Pearson Prentice Hall.

5. Recommended reading and other learning resources/tools

1. Wackerly D, Mendenhall W, Scheaffer RL. 2007. *Mathematical Statistics with Applications 7 th Edition*, Duxbury Thomson Learning.

6. Specific course information

A. Brief description of the content of the course (catalog description)

In this course material is provided on basic concepts related to random variables and their distribution, transformation of one random variable, transformation of two or more random variables, the concept of order statistics, the concept of transformation of the t and F distribution, the concept of convergence and probability distribution, the concept of hypothesis testing and interval estimation. To increase understanding and provide simple research experience to students, this lecture is also equipped with a final project, namely implementing selected statistical methods on simple data and then presenting them individually (selected topics only).

B. Prerequisites or co-requisites

C. Indicate whether a required or elective course in the program Required

D. Level of course unit (according to EQF: first cycle Bachelor, second cycle Master)

Second Cycle master

_

E. Year of study when the course unit is delivered (if applicable) 1st Year F. Semester when the course unit is delivered

Second Semester

G. Mode of delivery (face-to-face, distance learning)

Mixture (Face to face and Distance learning)

7. Intended Leening Outcomes

ILO-2: Mastering mathematical concepts and applications (real analysis, advanced linear algebra, and statistics) in solving complex mathematical problems.

PI-1: Able to explain mathematical concepts (Real Analysis, Advanced Linear Algebra, and Statistics).

PI-2: Able to identify complex mathematical problems.

ILO-3: Able to master one or several mathematical problems in analysis, algebra, applied mathematics, statistics and combinatorics.

PI-1: Able to identify theories used in related mathematical problems.

PI-2: Able to apply theories for advancement in related fields (advanced theory).

PI-3: Able to use advanced theory to solve related mathematical problems. ILO-4: Mastering scientific techniques and developing them in solving research problems through multidisciplinary or interdisciplinary approaches.

PI-1: Able to apply mathematical techniques in research problem-solving.

PI-2: Able to analyse research problems.

PI-3: Able to formulate theorems/models and prove their validity.

PI-4: Able to use various mathematical software to solve complex mathematical problems.

8. *Course Learning Outcomes ex. The student will be able to explain the significance of current research about a particular topic.*

- 1. Students are able to explain basic concepts related to random variables and their distribution.
- 2. Students are able to analyze the concept of transformation of one and two random variables.
- 3. Students are able to analyze the concept of regulatory statistics.
- 4. Students are able to analyze the concept of t and F distribution transformations.
- 5. Students are able to explain and analyze the concepts of convergence and distribution of opportunities.
- 6. Students are able to use the concept of hypothesis testing.
- 7. Students are able to use the concepts and stages of interval estimation.
- 8. Students are able to reason intuitively and analytically and are able to express the results of their reasoning in writing, systematically and rigorously.

9. Brief list of topics to be covered

- 1. Random variables and their distribution.
- 2. Transformation of one and two random variables.

3. Ordered statistics.

- 4. Transformation of t and F distribution.
- 5. Convergence and distribution of probability.
- 6. Hypothesis testing.
- 7. Interval estimation.

10. Learning and teaching methods

Presentation, Small Group Discussion, Directed Learning.

11. Language of instruction

Bahasa Indonesia

12. Assessment methods and criteria

Summative Assessment :

- 1. Activeness : 10%
- 2. Project : 10%
- 3. Quiz : 20 %
- 4. Mid Semester : 30%
- 5. Final Semester : 30%

Formative Assessment:

- 1. Thumb up and thumb down
- 2. Minutes paper

SEMESTER STUDY PLAN STATISTICS THEORY (ELECTIVE COURSES)

DEPARTMENT OF MATHEMATICS AND DATA SCIENCE FACULTY OF MATHEMATICS AND NATURAL SCIENCES

UNIVERSITAS ANDALAS

2024

1 Semester Study Plan

SEMESTER STUDY PLAN STUDY PROGRAM: MASTER OF MATHEMATICS FACULTY OF MATHEMATICS AND NATURAL SCIENCES UNIVERSITAS ANDALAS

Course Nan	ne	Course Code	I-Learn URL		Credits	Semester	COMPILATION DATE				
STATISTICS THEORY		MAT 82231	http://sci.ilearn.unand.ac.id		3	2	May 1st, 2024				
Person in Charge		Study Plan	Creator	Head of Rese	arch Group	Head of	the study program				
		Prof. Dr. Ferra Y	'anuar, M.Sc	Yudiantri A	sdi, M.Sc	Prof. D	r. Ferra Yanuar, M.Sc				
Intended Learning	ILO-Study Pr	ıdy Program									
Outcomes (ILO) and Performance Indicators (PI)	ILO-2 ILO-3	Mastering math statistics) in sol PI-1. Able to expl PI-2. Able to iden PI-3. Able to solv Comprehensive applied mather	nematical con- ving complex ain mathemati atify complex n e complex mat e mastery of c natics, statisti	cepts and applica mathematical pro- cal concepts (Real 4 nathematical problem hematical problem one or several theo ics and combinato	tions (real analy oblems. Analysis, Advanc ems. s. ories for develoj rial mathematic	vsis, advanced l ced Linear Algeb pment in the fie cs.	inear algebra, and ra, and Statistics). elds of analysis, algebra,				

	PI-1. Able to identify theories used in related mathematical problems.
	PI-2. Able to apply theories for advancement in related fields (advanced theory).
	PI-3. Able to use advanced theory to solve related mathematical problems.
ILO-4	Mastering scientific techniques and developing them in solving research problems through
	multidisciplinary or interdisciplinary approaches.
	PI-1. Able to apply mathematical techniques in research problem-solving.
	PI-2. Able to analyse research problems.
	PI-3. Able to formulate theorems/models and prove their validity.
	PI-4. Able to use various mathematical software to solve complex mathematical problems.
Course Le	arning Outcome (CLO)
CLO 1	Students are able to explain basic concepts related to random variables and their distribution (ILO-2: PI-1, PI-2)
CLO 2	Students are able to analyze the concept of transformation of one and two random variables (ILO-2: PI-3)
CLO 3	Students are able to analyze the concept of order statistics (ILO-3: PI-1, PI-2)
CLO 4	Students are able to analyze the concept of t and F distribution transformations (ILO-3: PI-3)
CLO 5	Students are able to explain and analyze the concepts of convergence and distribution of opportunities (ILO-4: PI-1, PI-2)
CLO 6	Students are able to use the concept of hypothesis testing (ILO-4: PI-3)
CLO 7	Students are able to use the concepts and stages of interval estimation (ILO-4: PI-4)

	CLO 8	Students are able to reason intuitively and analytically and are able to express the results of their reasoning in writing, systematically and rigorously (ILO-3: PI-4)
Brief description	In this cours variable, tra distribution, increase und implementin	The material is provided on basic concepts related to random variables and their distribution, transformation of one random insformation of two or more random variables, the concept of order statistics, the concept of transformation of the t and F , the concept of convergence and probability distribution, the concept of hypothesis testing and interval estimation. To derstanding and provide simple research experience to students, this lecture is also equipped with a final project, namely ng selected statistical methods on simple data and then presenting them individually (selected topics only).
Study Materials	1.Con2.Tran3.Tran4.Sett5.Tran6.Con7.Hyp8.Inte9.Case	icepts of random variables and their distribution insformation of one random variable insformation of two or more random variables ing statistics insformation of the t and F distribution invergence and distribution of opportunities pothesis testing erval estimation e Study
References	Main: Roussas, G. Hoog RV , N	2003. Introduction to Probability and Statistical Inference. Academic Press. AcKean JW, Craig AT. 2005. Introduction to Mathematical Statistics 6 th Edition. Pearson Prentice Hall.

	Supporting:							
	Wackerly D, Mendenhall V	N, Scheaffer RL. 2007. Mathematical Statistics with Applications 7 th Edition, Duxbury Thomson Learning.						
Learning Media	Software:	Hardware:						
	SPSS dan R Komputer/Laptop dan LCD Projector							
Team Teaching	Prof. Dr. Ferra Yanuar, M.Sc							
Assessment	Assignment, participation,	quiz, midterm exam, final exam.						
Required courses	MAT81131 Probability The	eory						
Academic Norms	Follow the Academic Regu	alations of the Andalas University Undergraduate Program						
	(https://akademik.unand.a	ac.id/images/2022-03-						
	30%20Peraturan%20Rekto	r%20Nomor%207%20Tahun%202022%20Penyelenggaraan%20Pendidikan-khusus%20Bab%20II.pdf)						

2. Weekly Lecture Plan

					LEAR	NING ACTIVIT	TIES			
					[]	Estimated Time]				
WEEK	COURSE	INDICATORS	ASSESSMENT	(5) I N						WEIGHT
(1)		(3)	(4)	Synchro	nous	Asynch	ronous		[Reference]	(%)
	(2)			Face to Face Offline	Face to Face Online	Independent	Collaborative	MEDIA (9)	(10)	(11)
				(5)	(6)	(7)	(8)			

1	CLO 1: Students are able to explain basic concepts related to random variables and their distributions.	 Discipline in implementing the college contract Accuracy in understanding related material 	Participation (2.5%) Midterm exam (10%)	Class: - introduction of semester learning plan - discussion about course material [1 x 3 x 50 minutes]	Students find out the references and study lecture materials: the scope of statistics and the concept of random variables and their distributions. [1 x 3 x 120 minutes]		LMS (ilearn UNAND)	 Scope of statistics, The concept of random variables and their distribution 	of 12.5% ot n d
2-3	CLO 2: Students are able to analyze the transformation concept of one and two random variables.	 Accuracy in understanding related material Accuracy in answering assignment questions 	Midterm exam (10%) Quiz (10%)	Class: - explanation of concepts - discussion about course materials	Students find out the references and study materials [2 x 3 x 60 minutes]	Students's discussion in groups [2x3x60] minutes	LMS (ilearn UNAND)	a. Transformatio of one random variable b. Transformatio of two random variables	20% n 1 n

		 Neatness of assignment execution Originality of assignment results 		[2 x 3 x 50 minutes]				
4	CLO 3: Students are able to analyze the concept of regulatory statistics.	 Accuracy in understanding related material Accuracy in answering assignment questions Neatness of assignment execution Originality of assignment results 	Midterm exam (10%) Participation (2.5%) Assignment (2.5%)	- Quiz, - discussion about course materials [1 x 3 x 50 minutes]	Students find out references and study material [1 x 3 x 60 minutes]	Students discuss in groups [1x3x60]	Setting statistics	15%
5	CLO 4: Students are able to analyze the concept of t and F	• Accurate understanding of related material	Assignment (5%)	- Discussion about course materials	Students find out references and study material	Students discuss in groups	a. Transformation of t and F distributions.	5%

	distribution transformations.	 Accuracy in answering assignment question Neatness in completing assignments Originality of assignment results 		[1 x 3 x 50 minutes]	[1 x 3 x 60 minutes]	[1x3x60]		b. Questions and discussion	
6-7	CLO 5: Students are able to analyze the concepts of convergence and opportunity distribution.	 Accurate understanding of related material Accuracy in answering assignment questions Neatness in completing assignments Originality of assignment results 	Participation (2.5%)	Class: - Explanation the concepts, - discussion about course materials [2 x 3 x 50 minutes]	Students find out references and study material [2 x 3 x 60 minutes]	Students discuss in groups [2x3x60]	• LMS	a. Convergence and probability distribution.b. Questions and discussion	2.5%

				Midte	erm exam					
8-10	CLO 6: Students are able to use the concept of hypothesis testing and its application.	 Accuracy in understanding of related material Accuracy in answering assignment questions Neatness in completing assignments Originality of assignment results 	Final exam (10%) Participation (2.5%) Assignment (2.5%)	Class: - Explanation the concepts, - discussion about course materials [3 x 3 x 50 minutes]		Students find out references and study material [3x 3 x 60 minutes]	Students discuss in groups [3x3x60]	• LMS • Zoom	a. Hypothesis test b. One-way hypothesis test. c. Two-way hypothesis testing d. Case study	15%
11-14	CLO 7: Students are able to use the concepts and stages of interval estimation. CLO 8: Students are able to reason intuitively and	 Accuracy in understanding of related material Accuracy in answering assignment questions 	Final exam (10%+10%) Quiz (5%+5%)	Class: - Explanation the concepts, - discussion about course materials [4 x 3 x 50 minutes]		Students find out references and study material [4x 3 x 60 minutes]	Students discuss in groups [4x3x60]	• LMS • Zoom	a. Estimation method (Bayesian Method) b. Point estimation	30%

able to express the results of their reasoning in writing, systematically and rigorously.	 completing assignments Originality of assignment results 							estimation. d. Case study				
	Final exam											

II. Indicators, Criteria, and Proportions of Assessment

NO	FORM OF ASSESSMENT	PROPORTION (%)
1	Assignment	10%
2	Participation	10%
3	Quiz	20%
4	Midterm exam	30 %
4	Final exam	30%
	TOTAL	100

Assessment proportion for each Course Learning Outcome (CLO):

- CLO-1: 15 %
- CLO 2: 12%
- CLO 3: 12 %
- CLO 4: 11 %
- CLO 5: 11 %
- CLO 6: 11 %
- CLO 7: 17 %
- CLO 8:11%

III. Assessment Plan Table

For	rm of assessment	Midterm	Final	Oria	Participa	Assign	Total of	
Co	urse Learning Outcomes (CLO)	exam	exam	Quiz	tion	ments	Proportion	
1.	Students are able to explain basic concepts related to random variables and their distribution (ILO-2: PI-1, PI-2)	10%			2.5%		12.5%	

2.	Students are able to analyze the concept of transformation of one and two random variables (ILO-2: PI-3)	10%		10%			20%
3.	Students are able to analyze the concept of ordered statistics. (ILO-3: PI-1, PI-2)	10%			2.5%	2.5%	15%
4.	Students are able to analyze the concept of t and F distribution transformations (ILO-3: PI-3)					5%	5%
5.	Students are able to explain and analyze the concepts of convergence and distribution of probabilitys (ILO-4: PI-1, PI-2)				2.5%		2.5%
6.	Students are able to use the concept of hypothesis testing (ILO-4: PI-3)		10%		2.5%	2.5%	15%
7.	Students are able to use the concepts and stages of interval estimation (ILO-4: PI-4)		10%	5%			15 %
8.	Students are able to reason intuitively and analytically and are		10%	5%			15%
	able to express the results of their reasoning in writing,						
	systematically and rigorously (ILO-3: PI-4)						
Total of Proportion		30%	30%	20%	10%	10%	100%