SEMESTER STUDY PLAN ADVANCED LINEAR ALGEBRA (COMPULSORY COURSE)

DEPARTMENT OF MATHEMATICS AND DATA SCIENCE FACULTY OF MATHEMATICS AND NATURAL SCIENCES UNIVERSITAS ANDALAS

2024

SEMESTER STUDY PLAN (SSP) MASTER PROGRAM OF MATHEMATICS FACULTY OF MATHEMATICS AND NATURAL SCIENCES UNIVERSITAS ANDALAS

Course	Course Name			URI LI	earn	Credits	Semester	Compilation Date	
A duanced Line	an Alacha	10				2	1	15 Mars 2024	
Auvanced Line	ear Aigebr	ä	MA181111	<u>nttps://sci.ileari</u>	n.unand.ac.id	3	1	15 May 2024	
			Study Pla	in Creator	Head of Re	esearch Group	Head of	Study Program	
Person In	Charge		Prof. Dr. A	dmi Nazra	Nova Noli	za Bakar MSi	Prof D	r Forra Vanuar	
			Dr. Y	'anita		Za Dakar, Wi.Or	1 IOI. D		
	Intended	d Learning Ou	itcomes						
Intended Learning	ILO-2	Mastering n	nathematical con	ncepts and applic	ations (real a	nalysis, advanced	l linear algeb	ora, and statistics)	
Outcomes (ILO) and		in solving co	omplex mathem	atical problems	Ϋ́,	5	0		
Performance Indicator		PI-1. An abi	lity explain mat	hematical concer	ts (Real Analy	vsis Advanced I	inear Algehi	ra and Statistics)	
(PI)		DI 2 $A = -1$	An ability to identify complex mathematical problems						
		PI-2: An abi	An ability to identify complex mathematical problems.						
		PI-3: An abi	lity to solve con	nplex mathematic	cal problems.				
	ILO-3	Comprehen	rehensive mastery of one or several theories for development in the fields of analysis, algebra,						
		applied mat	thematics, statis	tics and combina	torial mathem	natics.		, 0	
		PI-1. An abi	lity to identify t	heories used in re	elated mather	natical problems			
		PI_2: An abi	lity to apply the	ories for advance	mont in rolat	ed fields (advanc	ed theory)		
		DI 2, $A = 1$					eu meory).		
		P1-3: An abi	inty to use advar	nced theory to so	lve related ma	athematical probl	lems.		
	Course I	rse Learning Outcomes							
		An ability to	y to understand/solve problems and properties in vector space (ILO-2: P1-1, PI-2, PI-3, ILO-3:						
	1	P1-1, PI-2, P	PI-2, PI-3)						
		, ,	/						

2	An ability to understand PI-2, PI-3, ILO-3: P1-1, PI	l/solve problems and properties of eigenvalues and eigenvectors (ILO-2: P1-1, I-2, PI-3)				
3	An ability to understand ILO-3: P1-1, PI-2, PI-3)	l/solve problems and properties of linear transformations (ILO-2: P1-1, PI-2, PI-3,				
4	An ability to solve proble PI-2, PI-3, ILO-3: P1-1, P	ems and properties in quotidian spaces and isomorphism theorems (ILO-2: P1-1, I-2, PI-3)				
In this of the form of a vec matrice	course, mathematical conc n of lemmas and theorems tor space, eigenvalues and s, quotidian spaces and iso	cepts will be discussed in the form of definitions and mathematical properties in s related to Linear Algebra, which include: vector spaces and subspaces, the basis d eigenvectors, diagonalization, and transformations. linear and representational omorphism theorem.				
The least	learning method in this course is face to face					
1. V 2. H 3. I	Vector Space Digenvalues and Eigenvect Linear Transformation	tors				
Main:						
1. 5	teven Roman, Advanced La	<i>inear Algebra,</i> Springer Science+Business. 2008				
Additio	nai: Jugo, I. Woerdeman, Advan	ced Linear Algebra, 2 nd eds. Taylor & Francis Group , New York, 2016.				
3. E	Bruce, N. Cooperstein, Advan	nced Linear Algebra, Taylor & Francis Group , New York, 2015				
Softwar	e:	Hardware:				
• LMS	Unand	Computer/Laptop				
(<u>http:</u>	<u>//fmipa.ilearn.unand.ac.i</u>	• Smartphone				
$\frac{d}{2}$	monting					
Vhat	sann					
	2 3 4 In this of the form of a vec matrices The lear 1. V 2. F 3. L Main: 1. S Addition 2. H 3. B Softward • LMS (http: d/) • Zoom • What	2An ability to understand PI-2, PI-3, ILO-3: P1-1, P3An ability to understand ILO-3: P1-1, PI-2, PI-3)4An ability to solve proble PI-2, PI-3, ILO-3: P1-1, PIn this course, mathematical cond the form of lemmas and theorems of a vector space, eigenvalues and matrices, quotidian spaces and isdThe learning method in this course 1. Vector Space 2. Eigenvalues and Eigenvect 3. Linear TransformationMain: 2. Hugo, J. Woerdeman, Advanced LAdditional: 2. Hugo, J. Woerdeman, Advant 3. Bruce, N. Cooperstein, Advant 3. Bruce, N. Cooperstein, Advant 4. Matsapp				

Team Teaching	1. Prof. Dr. Admi Nazra
	2. Dr. Yanita
Assessment	Homework, Quizzes, Mid-Term exam, Final exam
Required courses	-
	https://akademik.unand.ac.id/images/2022-03-
Academic Norms	30%20Peraturan%20Rektor%20Nomor%207%20Tahun%202022%20Penyelenggaraan%20Pendidikan-
	khusus%20Bab%20II.pdf

Weekly Study Plan

	Course					Subject				
Week/ Meet	Course	Indicator	Assessment	Synchronous*		Asynchronous**			Subject,	Weight
(1)	(2)	(3)	(4)	Face to face Offline (5)	Face to face Online (6)	Individual (7)	Collaboration (8)	Media (9)	(10)	(11)
1	An ability to understand /solve problems and properties in vector spaces	 The accuracy in proving a nonempty set is a vector space Accuracy in proving a subset is a subspace of vector space. Accuracy in proving in proving a subset is a subspace of vector space. 	 Non Test: Homewor k 1: 4% Mid-term Exam: 5% 	 Teaching and discussion: introduction of RPS Explanation of Learning Material Task Description Assessment Explained 	 Teaching and discussion: introduction of RPS Explanation of Learning Material Task Description Assessment Explained 	 Students read and study learning materials Students do assignments independently 		PPT I learn (LMS Unand) (Certain condition s: Zoom meeting, WA group, learning video)	 Lecture Contract (SSP) Theory Review Group theory Field Ring Theory →Functi on Element ary Line 	9%

		Theorem		[1 x 3 x 50	[1 x 3 x 50			Operati	
		Suppose the		menit]	menit]			ons	
		vector space		-	-			- Determi	
		over the field .			(Certain			nants of	
		A nonempty			conditions: Total			matrices	
		set is a			blended learning :			- Inverse	
		subspace of if			50%)			Matrix	
		and only						• Main	
		$\mathrm{if} VFS \subset VV$						Material	
		The set is						- Vector	
		closed to the						space	
		summation,						- Subspac	
		i.e. if then						e of a	
		$.Ss_1, s_2 \in Ss_1 +$						vector	
		$s_2 \in S$						space	
		The set is							
		closed to the						[1]	
		scalar							
		multiplication							
		, i.e. if and							
		then $Sr \in$							
		$Fs \in Srs \in S$							
2		• Accuracy	Mid-term	Teaching and	Teaching and	• Students read	PPT	Lattice	5%
	An ability to	in proving	Exam: 5%	discussions:	discussions:	and study	I learn	subspace	
	understand	Proposition		• Explanation	• Explanation	learning	(LMS		
	/solve	Suppose and		of Learning	of Learning	materials	Unand)	[1]	
	problems	is a vector		Material	Matorial	 Students do 	O marica)		
	and	subspace of ,		• Teal					
	properties in	then STV is a				assignments	• (C		
	vector	subspace of		Description	Description	independently	ertain		
	spaces	$S \cap TV$ is a					conditio		
		subspace of					ns: Zoom		

		$S + T = \{s \in S, t \in T\}V$ • Accuracy in proving Proposition If , then the subspace of , and the largest lower bound of and is $S, T \in S(V)S \cap$ $TVSTglb\{S, T\} =$ $S \cap T$ If , then is the subspace of and the smallest upper bound of and is $S, T \in S(V)S +$ $TVSTlub\{S, T\} =$ S + T		[1 x 3 x 50 minutes]	[1 x 3 x 50 minutes] (Certain conditions: Total <i>blended learning</i> : 50%)		meeting, WA group, learning video)		
3	An ability to understand / solve problems and properties in vector spaces	• The accuracy of proving one vector is a linear combination of one or more other vectors.	Non-Test Homework 2: 4% Mid-term Exam 3%	 Teaching and discussions: Explanation of Learning Material Task Description 	 Teaching and discussions: Explanation of Learning Material Task Description 	 Students read and study learning materials Students do assignments independentl y 	PPT I learn (LMS Unand) • (Certain conditio ns:	 Linear combinati on Builder set (span) Linear Free 	7%

Accur provir vector severa vector builde vector	acy in g one [1 x 3 x or minute s is a r in a space	x 50 es] [1 x 3 x 50 minutes]	Zoom meeting, WA group, learning video)	
 Vector The accura provin or monovector linearly independent of the provin nature the relation of the builded linear 	space cy of g one re s is y enden early dent acy in g the of nship set of rs and free,	(Specific conditions: Total <i>blended learning</i> : 40%)		
that is provir Theorem Suppose subset is nonempt Then the following	g the y in .			

	statement is				
	equivalent: $S \neq$				
	{0}V				
	1. is linearly				
	freeS				
	• Each				
	nonzero				
	vector is a				
	single linear				
	combination				
	of vectors in				
	17 F				
	snan(S)S				
	 No vector in 				
	is a linear				
	combination				
	of other				
	vectors in				
	SS				
	Theorem				
	Suppose the				
	vector space				
	over the field				
	and the set of				
	vectors in .				
	The following				
	statement is				
	equivalent:				
	VFSV				
	S is linearly				
	free and is a				
	span of .SV				

For eac	h				
vecto	or, there				
is a s	ingle				
set o	fvectors				
toge	ther				
with	a single				
set o	f scalar				
finite	ev∈				
Vv_1 ,	$v_2,, v_n$				
Sr ₁ , r	$r_2, \dots r_n \in$				
F					
v					
$= r_1 v_1$	$+ r_2 v_2$				
+…+	$r_n v_n$				
3. Supp	oose,				
then	the				
build	ling set				
is mi	nimal if				
any	subset				
of is	not a				
span	V =				
span	L(S)SSV				
• 4. St	ippose,				
then	the				
linea	arly free				
set i	S .				
max	imum,				
if an	y super-				
true	set of				
depe	ends				
linea	arly.V =				
spar	n(S)SS				

4		The accuracy	Mid-term	Teaching and	Teaching and	Students read	PPT	Basis	5%
	An ability to	in proving	Exam: 5%	discussions:	discussions:	and study	I learn		
	understand	a set of				learning	(LMS	Dimension	
	/ solve	vectors in a		Explanation	Explanation of	materials	Unand)		
	problems	vector		of Learning	Learning	materials	Chanaj		
	and	space is the		Material	Material				
	properties in	basis					(Certain		
	vector	Accuracy in					conditio		
	spaces	proving					ns:		
		Theorem		[1 x 3 x 50			Zoom		
		Suppose the		minutes]	[1 x 3 x 50		meeting,		
		vector space		-	minutesl		WA		
		and .			L		group,		
		Suppose is a			(Specific		learning		
		linearly free			conditions: Total		video)		
		set in and is			blended learning :		,		
		the set of			40%)				
		builders in			/				
		which							
		contains .							
		Then there is							
		a base in with							
		Particularly:							
		$VV \neq$							
		$\{0\}IVSVIBVI \subseteq$							
		$B \subseteq S$.							
		Any vector							
		space,							
		except the							
		vector							
		space has a							
		base.{0},							

		Any linear free repertoire is loaded in the base V Any builder set in , loads the base. V Accuracy in proving • Suppose a V vector space and assume that the vectors are linearly free, and the vectors span from . So. $v_1, v_2,, v_n u$ m							
5	An ability to understand /solve problems and properties in	 Accuracy in proving that a vector space is a direct sum Accuracy in proving 	Non-Test Homework 3: 2% Mid-term Exam : 5%	Teaching and discussions: Explanation of Learning Material	Teaching and discussions: Explanation of Learning Material Task Description	 Students read and study learning materials Students do assignments independently 	PPT I learn (LMS Unand) •(Certain conditio	 Direct su on vector space Row space and column space' 	8%

vector	Theorem	Task			ns:	• Null	
spaces	Suppose a	Description	[1 x 3 x 50		Zoom	space	
	subspace of a	1	minutes]		meeting,		
	vector space .				WA		
	For , , the		(Specific		group,		
	form. Then if	[1 x 3 x 50	conditions: Total		learning		
	and only if	minutes]	blended learning :		video)		
	fulfilled:	-	40%)		,		
	$U_1, U_2,, U_k V i \in$,				
	$N1 \leq i \leq$						
	$kW_i =$						
	$\sum_{i \neq i} U_i V =$						
	$U_1 \oplus U_2 \oplus$						
	$ \oplus U_k$						
	$V = U_1 + U_2 +$						
	$\cdots + U_k$						
	$U_i \cap W_i = \{0\}$						
	for						
	each <i>i</i>						
	• Accuracy						
	in proving						
	Theorem						
	Suppose and						
	are subspaces						
	of vector						
	spaces . So						
	STV						
	$\dim \dim (S) + \prod_{i=1}^{n} \dim (T)$						
	$\begin{array}{c} aim \ aim \ (I) = \\ dim \ dim \ (S) \end{array}$						
	u(m u(m (S + T)) + dim (S - C))						
	T + $u(m(S))$						
	1)	1	1				

Specifically, if				
is the				
complement of				
, then TS				
dim dim (S) +				
$\dim \dim (T) =$				
dim dim (V)				
that is				
dim dim (S \oplus				
T) =				
dim dim (S) +				
dim dim (T)				
• Accuracy				
in				
determini				
ng vector				
coordinate				
s from				
those				
associated				
with				
ordered				
bases (by				
changing				
the vector				
sequence)				
vB				
• Accuracy				
in proving				
Theorem				
Suppose the				
base is ordered				
in				

		dimensioned . Suppose and . So $B =$ $(v_1, v_2,, v_n)V$ $Vr \in F$ $[\Box + \Box]_{\Box}$ $= [u]_B + [v]_B$ $[rv]_{\Box} = r[v]_{\Box}$							
		 Accuracy in determinin g the row space, column space and nul space of a matrix, along with their bases Accuracy in determinin g the rank and nullity of a matrix 							
6	An ability to understand / solve problems	• Accuracy in determinin g eigenvalue	Non-Test Homework 4 : 5%	Teaching and discussions: Explanation of Learning Material	Teaching and discussions: Explanation of Learning Material	• Students read and study learning materials	PPT I learn (LMS Unand)	 Characterist ic polynomial s Eigen 	7%

and	s and	Mid-term	Task	Task Description	• Students do		value than	
properties in	eigenvector	Exam: 3%	Description	1	assignments	●(Certain	vector	
eigenvalues	s in a		1		independently	conditio	eigen	
and	matrix				independentity	ns: Zoom	0	
eigenvectors	• Accuracy					meeting,		
0	in proving		[1 x 3 x 50	[1 x 3 x 50		WA		
	Theorem		minutes]	minutes]		group,		
	Suppose is an		_	-		learning		
	eigenvalue –			(Specific		video)		
	an eigenvalue			conditions: Total				
	that differs			blended learning :				
	from a matrix.			50%)				
	Then the			,				
	eigenvectors							
	associated							
	with each of							
	these							
	eigenvalues							
	are linearly							
	free, that is, if							
	, then the set							
	is linearly							
	free.							
	$\lambda_1,\lambda_2,\ldots,\lambda_k \ A \in$							
	$M_n(F)v_i \in$							
	$E_{\lambda_i}\{v_1, v_2, \dots, v_k\}$							
	Accuracy in							
	determining							
	the algebraic							
	multiplicity							
	and geometric							

		multiplicity of an eigenvalue							
7 An unc solv pro and pro eige and eige	n ability to derstand / lve oblems d operties in genvalues d genvectors	 Accuracy in determining the invertible matrix that diagonalizes the matrix <i>PA</i> Accuracy in determining digonalized and non-diagonalized and non-diagonaliza ble matrices Accuracy in proving Theorem If the matrix , then the following two statements are equivalent: <i>An</i> × <i>n</i> The matrix can be diagonalized <i>A</i> The matrix has an eigenvector 	 Non Test: Homework 5:5% Mid-term Exam: 4% 	Teaching and discussions: Explanation of Learning Material Task Description [1 x 3 x 50 minutes]	Teaching and discussions: Explanation of Learning Material Task Description [1 x 3 x 50 minutes] (Specific conditions: Total <i>blended learning</i> : 50%)	 Students read and study learning materials Students do assignments independently 	PPT I learn (LMS Unand) • (Certain conditio ns: Zoom meeting, WA group, learning video)	Diagonalizat	9%

that is linearly				
freeAn				
• Accuracy				
in proving				
Theorem				
Suppose,				
then a matrix				
can be				
realized if and				
only if the				
geometric				
multiplicity of				
each of its				
eigenvalues is				
equal to its				
algebraic				
multiplicity.				
$A \in M_n(F)A$				
• Accuracy				
in proving				
Theorem				
Suppose and				
suppose the				
roots are in				
linear roots				
(of degree				
1). <i>A</i> ∈				
$M_n(F)C_A(x)$				
A matrix is				
diagonalized				
if and only if				
the sum of the				

		geometric multiplicity of eigenvalues is <i>An.</i> If the geometric multiplicity of any eigenvalue of is equal to the algebraic multiplicity, it is diagonalized. <i>A A</i> If all the roots of are different (i.e. each of their algebraic multiplicity is 1), then they are diagonalized. $C_A(x)A$								
8					Mid-Exa	am				
9	An ability to understand /solve problems and	• Accuracy in proving a transform ation is linear	• Non Test Homewor k 6 : 4%	Teaching and discussions: Explanation of Learning Material	Teaching and discussions: Explanation of Learning Material	 Students read and study learning materials 	PPT I learn (LMS Unand)	 Linear transforma tion Type of linear transforma 	8%	

properties in	•	Accuracy	• Final	Task	Task Description	• Students do	•(Certain	tion :	
linear		in proving	Exam:4%	Description	1	assignments	conditio	endomorfi	
transformati		the		Description		independent	ns: Zoom	sma,	
ons		properties				independenti	meeting,	monomorf	
		of the				У	WA	isma,	
		himpunan		[1 x 3 x 50	[1 x 3 x 50		group,	epimorfis	
		linear		minutesl	minutesl		learning	ma,	
		transform			L		video)	isomorfis	
		ation, i.e.			(Specific		,	ma	
		accuracy			conditions: Total				
		in proving			blended learning :				
	Teo	orema			50%)				
	 The and If σ If τ If τ The of j the 	e set $\mathcal{L}(V, W)$ is a vector d scalar multiplication of fun $\tau \in \mathcal{L}(U, V)$ and $\tau \in \mathcal{L}(V, W)$ $e \in \mathcal{L}(V, W)$ is bijective the e vector space $\mathcal{L}(V)$ is an d functions. The identity map r zero map $0 \in \mathcal{L}(V)$ is the a	space under ordinary addition of ctions by elements of F . W , then the composition $\tau \sigma$ is in . $u \tau^{-1} \in \mathcal{L}(W, V)$. $dgebra, where multiplication is cc\iota \in \mathcal{L}(V) is the multiplicative iddilive identity.$	functions $\mathcal{L}(U, W)$. mposition entity and	,				
	Teo	orema							
	Theore basis fo specifyi linearity	em 2.2 Let V and W be w for V. Then we can define ing the values of τv_i arbitrary y, that is,	ector spaces and let $\mathcal{B} = \{v_i \mid i \in a \text{ linear transformation } \tau \in \mathcal{L}(v_i)$ ily for all $v_i \in \mathcal{B}$ and extending	[1] be a V, W) by to V by					
	This pr	$\tau(a_1v_1 + \dots + a_n)$	$a_n) = a_1 \tau v_1 + \dots + a_n \tau v_n$	C(V,W)					
	satisfy 1	$\tau v_i = \sigma v_i$ for all $v_i \in \mathcal{B}$ then	$\tau = \sigma.$	2(1,11)					
	•	Accuracy							
		in 1							
		determini							
		ng the							
		kernel							
		and							
		image of							
		a linear							
		transform							
	•								
	•	Accuracy							
		ın							

		proving propertie s in the type of linear transform ation, namely Theorem Theorem 2) τ is surjective if and only	W). Then by $if \operatorname{im}(\tau) = W$ $if \operatorname{ker}(\tau) = \{0\}$							
10 An a unde solve prob and prop linea trans ons	ability to lerstand/ ze blems l perties in ear nsformati	 Accuracy in determini ng a linear transform ation is bijective (isomorp hism) Accuracy in proving the propertie s of isomorph ism, namely 	Non Test Homework 7:4% Final Exam: 4%	Teaching and discussions: Explanation of Learning Material Task Description [1 x 3 x 50 minutes]	Teaching and discussions: Explanation of Learning Material Task Description [1 x 3 x 50 minutes] (Specific conditions: Total <i>blended learning</i> : 50%)	Students read and study learning materials Students do assignments independentl y	PPT I learn (LMS Unand) •(Certain conditio ns: Zoom meeting, WA group, learning video)	 K a iii a n li ti 	Kernels ind mages Kernel ind mage issociatio is with inear ransform ition ypes	8%

		Theorem 2.4 Let $\tau \in \mathcal{L}(V, W)$ be 1) S spans V if and only if τS spans 2) S is linearly independent in V	an isomorphism. Let $S \subseteq V$. Then ans W . if and only if τS is linearly indep	endent in					
		W. 3) S is a basis for V if and only ij	$ au S$ is a basis for $W.\Box$						
		Theorem 2.5 A linear transforma only if there is a basis B for V for maps any basis of V to a basis of V	tion $\tau \in \mathcal{L}(V, W)$ is an isomorph which $\tau \mathcal{B}$ is a basis for W . In the U	ism if and nis case, τ					
		Theorem 2.6 Let V and W be vector if $\dim(V) = \dim(W)$. \Box	for spaces over F . Then $V \approx W$	f and only					
		• Accuracy							
		in							
		determini							
		ng the							
		rank and							
		nullity of							
		a linear							
		transform							
		ation							
		• Accuracy							
		in							
		proving							
		the							
		nature of							
		rank and							
		nullity,							
		namely							
		Theorem 2.8 Let $\tau \in \mathcal{L}(V, W)$. 1) Any complement of $ker(\tau)$ is ison	wiphic to $im(\tau)$						
		2) (The rank plus nullity theorem))						
		$\dim(\ker(\tau))$ +	$\dim(\operatorname{im}(\tau)) = \dim(V)$						
		or, in other notation,							
		$rk(\tau) + $	$\operatorname{full}(\tau) = \operatorname{dim}(V)$						
11		• Accuracy	Non Test	Teaching and	Teaching and	Students read	PPT	Standard	8%
	An ability to	in	Homework	discussions:	discussions:	and study		matrix	
	understand/	determini	8:4%			learning			
	solve	ng				materials			

	problems and properties in linear transformati ons	 standard matrices based on definition s Accuracy in proving propertie s on standard matrices Accuracy in proving theorems Theorem 2.10 If A is an m × n matrix over F If \(\mathcal{C}(F^n, F^m)\) them \(\mathcal{T}(F^n, F^m)\) theorem \(\mathcal{T}(F^n, F^m)\) Theorem 2.11 Let A be an m × n matrix I) \(\tau_i, i^F^m - F^m\) is singlective if and and I) \(\tau_i, i^F^m - F^m\) is singlective if and and I) \(\tau_i, i^F^m - F^m\) is singlective if and and I) \(\tau_i, i^F^m - F^m\) is singlective if and and I) \(\tau_i, i^F^m - F^m\) is singlective if and and I) \(\tau_i, i^F^m - F^m\) is singlective if and and I) \(\tau_i, i^F^m - F^m\) is singlective if and and IP 	Final Exam : 4% then $\tau_{k} \in \mathcal{L}(F^{n}, F^{m})$. where $(re_{1} \cdots re_{n})$ $\mathbf{x} \circ f \tau$. $\mathbf{x} \circ \mathbf{v} \in F$. $\mathbf{y} \circ \mathbf{t} (A) = m$.	Explanation of Learning Material Task Description [1 x 3 x 50 minutes]	Explanation of Learning Material Task Description [1 x 3 x 50 minutes] (Specific conditions: Total <i>blended learning</i> : 50%)	• Students do assignments independentl y	I learn (LMS Unand) • (Certain conditio ns: Zoom meeting, WA group, learning video)		
12	An ability to understand / solve problems and properties in linear transformati ons	Accuracy in determinin g the matrix of related representati ons of a linear transformat ion related to each	Final exam: 6%	Teaching and discussions: Explanation of Learning Material [1 x 3 x 50 minutes]	Teaching and discussions: Explanation of Learning Material	Students read and study learning materials	PPT I learn (LMS Unand) • (Certain conditio ns: Zoom meeting,	 Transition matrix Matriks similar 	6%

ordered base on domain vector space and codomain vector		[1 x 3 x 50 minutes] (Certain conditions: Total <i>blended learning</i> : 50%)		WA group, learning video)	
space space I_{p} space I_{p} space I_{p} space I_{p} space I_{p} space I_{p} space I_{p} space devices oper I_{p} , it has the form x_{p} , where I_{p} is the form x_{p} , where I_{p} is the form x_{p} , where I_{p} is I_{p} in I_{p} is I_{p} is I_{p} in I_{p} is I_{p} in I_{p} is I_{p} in I_{p} in I_{p} in I_{p} in I_{p} in I_{p} is I_{p} in I_{p} in I_{p} in I_{p} in I_{p} in I_{p} is I_{p} in I_{p} in I_{p} in I_{p}	$(\Phi_{p})^{-1}$ J J^{-1} $J^{$				
Theorem 1.12 Let $B = \{0,,b_n\}$ and V . Then the change of basis operator $\phi_{B,j}$ whose standard matrix is $M_{B,\mathcal{L}} = \{b_n\}_{\mathcal{L}} \mid Hence \qquad [v]_{\mathcal{L}} = M_1$ and $M_{\mathcal{L},\mathcal{B}} = M_{B,\mathcal{L}}^{-1}$ • Accuracy in determinin g two similar matrices	be ordered bases for a vector space $= \phi_{c}\phi_{c}^{-1}$ is an automorphism of F^{*} , $\cdots [b_{n}]_{c}())$ $c_{c}^{1/2}$ is				

13	An ability to understand /solve problems and properties in linear transformat ions	Accuracy in determining the matrix representatio n of a linear transformati on with an ordered base defined in each vector space	Final exam: 6%	Teaching and discussions: Explanation of Learning Material [1 x 3 x 50 minutes]	Teaching and discussions: Explanation of Learning Material [1 x 3 x 50 minutes] (Certain conditions: Total <i>blended learning</i> : 50%)	Students read and study learning materials	PPT I learn (LMS Unand) • (Certain conditio ns: Zoom meeting, WA group, learning video)	Representatio n matrix	6 %
14	An ability to solve problems and properties in quotient spaces and isomorphis m theorems	 Accuracy in determining the mod quotient space , (is the vector space and is a subspace of .<i>VSVSV</i> Accuracy in proving 	 Non Test Homewor k 9: 4% Final exam : 3% 	Teaching and discussions: Explanation of Learning Material Task Description [1 x 3 x 50 minutes]	Teaching and discussions: Explanation of Learning Material Task Description [1 x 3 x 50 minutes]	 Students read and study learning materials Students do assignments independently 	PPT I learn (LMS Unand) •(Certain conditio ns: Zoom meeting, WA group, learning video)	Quotient space	7%

		Therm ML65 is a subgrave (V. The binary relative $z = v + v + v \in S$ is an approduce white on T , where opposite concerve for some $z + S = [z + z] \in S$ of $z = V$. The WL S of $z + z = S$ is the opposite one of V and $b \in S$ as unity space and $z + v = d d$ deal operation z + (z + S) = z - z = S (z + S) + (z + S) = (z + z) = S. The zero unit $z = V$ is the constant $z = V = V$ [S defined by $z_2/z^2 = z + S$ is a singular binar tradigensities sub-level $z = V$. Theorem 3.3 (The correspondence the bervers) D the function that as signs to each intermedial subspace $T/S = d V = S$ is an order-preserving one-to-zero correspondence the bervers D and the set of all subspaces of V/S .			(Specific conditions: Total <i>blended learning</i> : 50%)				
15	An ability to solve problems and properties in quotient spaces and isomorphis m theorems	 Accuracy in proving the universal nature of the quotient space Accuracy in proving the main theorem of isomorphis ms Accuracy in proving Accuracy in proving 	 Non Test Homewor k 10: 4% Final exam : 3% 	Teaching and discussions: Explanation of Learning Material Task Description [1 x 3 x 50 minutes]	Teaching and discussions: Explanation of Learning Material Task Description [1 x 3 x 50 minutes] (Specific conditions: Total <i>blended learning</i> : 50%)	 Students read and study learning materials Students do assignments independently 	PPT I learn (LMS Unand) • (Certain conditio ns: Zoom meeting, WA group, learning video)	The main theorem of isomorphism s	7%

16		 	FINAL EX	AM			1	L
						Total Weight	100%	
	$Moreover, \operatorname{int}(\tau') = \operatorname{int}(\tau)/S \operatorname{arstint}(\tau') = \operatorname{int}(\tau).$							_
	f o ay = 7							
	There is L is S by x induces of Y and is $\pi \in \mathbb{Q}[Y, W]$, using $S \subseteq Lu(r)$. Now, as given in r increases x around only a reaction that $r^{1}r(S \to W$ with the paperty that							

1 credit = 50 minutes face-to-face meeting, 60 minutes structured study, 60 minutes independent study Each meeting duration is 3 credits = 3×50 minutes

Indicators, Criteria, and Assessment Weights

1. Assessment weight for each Assessment

NO	Assessment	Weight (%)
1	Mid-Term Exam	20
2	Final Exam	20
3	Homework	10
4	Final Project	50

TOTAL	100

- 2. Assessment weight for Intended Learning Outcome
 - CLO-1: 16 %
 - CLO-2: 20 %
 - CLO-3: 20 %
 - CLO- 4: 20 %
 - CLO-5: 20 %

Assessment Plan Table:

Task: 40% Midterms: 30% Final Semester Exam: 30%

Assessment Plan Table::

No.	Learning Outcomes	Weight (%)					
		Task (%)	Mid (%)	Final (%)	Total		

1	Able to understand / solve problems and properties in vector spaces (CP2: P1-1, PI-2, PI-3, CP3: P1-1, PI-2, PI-3)	Task 1: 4 Task 2: 4 Task 3: 2	18		28
2	Able to understand / solve problems and properties in eigenvalues and eigenvectors (CP2: P1-1, PI-2, PI-3, CP3: P1-1, PI-2, PI-3)	Task 4: 5 Task 5: 5	12		22
3	Able to understand / solve problems and properties in linear transformations (CP2: P1-1, PI-2, PI-3, CP3: P1-1, PI-2, PI-3)	Task 6 : 4 (TM) Task 7: 4 (Kindergarten) Task 8 : 4 (TM)		16	28
4	Able to solve problems and properties in quotient spaces and isomorphism theorems (CP2: P1-1, PI-2, PI- 3, CP3: P1-1, PI-2, PI-3)	Task 9: 4(TM) Task 10: 4 (Kindergarten)		14	22
	Total	40	30	30	100