SEMESTER STUDY PLAN COMPLEX ANALYSIS (ELECTIVE COURSE)

DEPARTMENT OF MATHEMATICS AND DATA SCIENCE FACULTY OF MATHEMATICS AND NATURAL SCIENCES UNIVERSITAS ANDALAS

2024

SEMESTER STUDY PLAN (SSP) MASTER PROGRAM OF MATHEMATICS FACULTY OF MATHEMATICS AND NATURAL SCIENCES UNIVERSITAS ANDALAS

Course	Namo		Course Code	URL I-I	0.0141	Credits	Semester	Compilation Date		
						_				
Complex	Analysis		MAT81221	https://sci.ilear		3	4	13 May 2024		
Person In	Charge			Study Plan Creator Head of Research Group				Study Program		
				Dr. Shelvi Ekariani Dr. Haripamyu Prof. Dr. Ferra Yanuar						
		l Learning Ou								
Intended Learning	ILO-2	Mastering	mathematical conc	cepts and applica	tions (real ana	alysis, advanced	linear algebı	a, and statistics)		
Outcomes (ILO) and		in solving of	complex mathema	tical problems.						
Performance Indicator		PI-1: An ab	pility to explain ma	thematical conce	pts (Real Ana	lysis, Advanced	Linear Algel	ora, and Statistics).		
(PI)							0	. ,		
		PI-2: An ab	vility to identify co	mplex mathemat	ical problems	5.				
		$DI 2$, $Am a^{1}$	liter to colore complex methods and muchlenes							
	II O O		ability to solve complex mathematical problems.							
	ILO-3	1	ehensive mastery of one or several theories for development in analysis, algebra, applied							
			athematics, statistics, and combinatorial mathematics.							
		PI-1: An ab	PI-1: An ability to identify theories used in related mathematical problems.							
		DI 0. A 1	PI-2: An ability to apply theories for advancement in related fields (advanced theory).							
		PI-2: An at	bility to apply theo	ries for advancer	nent in related	a fields (advance	a theory).			
		PI-3: An ab	oility to use advance	ed theory to solv	ve related mat	hematical proble	ems.			
	ILO-6		actively involved	2						
			pility to independe				uired knowl	odao		
		1 1-1. All al	inty to independe	nuy expand and	ueepenieann	ing based on acqu		euge.		
		PI-2: An ab	-2: An ability to expand and deepen interdisciplinary competencies based on acquired knowledge.							
		PI-3: An al	PI-3: An ability to understand and apply the latest developments in mathematical theory.							

	Course L	earning Outcomes
	1	An ability to master theoretical concepts especially related to Complex number systems. (ILO-2: PI-1, PI-2, PI-3)
	2	An ability to develop mathematical thinking, starting from procedural understanding to broad comprehension including exploration, logical reasoning, generalization, abstraction, and formal proof about contour integrals. (ILO-3: PI-1, PI-2, PI-3)
	3	An ability to reconstructing, modifying, analyzing/structurally thinking about Cauchy integrals and their applications. (ILO-3 : PI-1, PI-2, PI-3)
	4	An ability to master theoretical concepts especially related to Meromorphic functions and residues, as well as Holomorphic functions. (ILO-2 : PI-1, PI-2, PI-3)
	5	An ability to prove a complex mathematical statement using appropriate facts and methods. (ILO-6 : PI 1 – 3)
Brief Description		urse provides experience for students to know about complex number systems, contour integral, Cauchy and their application, Meromorphic functions and residues, as well as Holomorphic function.
Course Materials	2. C 3. C 4. M	omplex number systems ontour integrals auchy integrals and their applications Ieromorphic functions and residues Iolomorphic functions
References	Main:	
		Greene & S. G. Krantz. (2006). <i>Function Theory of One Complex Variable</i> . 3 rd edition. AMS, USA
	Addition	
Learning Media	2. J. B. C	Conway. (1978). <i>Functions of One Complex Variable I</i> . 2 nd edition. Springer Hardware:
Learning micula	Soltwale	. Italuwate.

	 LMS Unand (<u>http://fmipa.ilearn.unand.ac.id/</u>) Zoom meeting Computer/Laptop Smartphone 	
	• Whatsapp	
Team Teaching		
	1. Dr. Shelvi Ekariani	
	2. Dr. Haripamyu	
Assessment	Homework, Quizzes, Mid-Term exam, Final exam	
Required courses	Advanced Real Analysis	
Academic Norms	https://akademik.unand.ac.id/images/2022-03-	
	30%20Peraturan%20Rektor%20Nomor%207%20Tahun%202022%20Penyelenggaraan%20Pendidikan-khusus%	<u>%20Bab%20II.pdf</u>

Weekly Study Plan

						ities/Forms of Lear [Time estimated]	ning			
Week / Meet	Course	Indicator	Assessmen	Synchro	onous*	Asynchro	nous**		Subject,	Weight
(1)	Outcomes (2)	(3)	t (4)	Face to face Offline (5)	Face to face Online (6)	Individual (7)	Collaboration (8)	Media (9)	references (10)	(11)
1	CLO-1 Ability to master theoretical concepts especially related to Complex number systems. (ILO-2 : PI-1, PI-2, PI-3)	 Discipline in carrying out the course contract. Accuracy in understanding related material. 	Non test Test Mid-Term exam: 5% Quizzes 1: 3%	 Teaching and discussion: Explanation of Semester Learning Plan explanation of learning material explanation of the task explanation of the task explanation of the assessment [1 × 3 × 50 minutes] 	 Teaching and discussion: Explanation of Semester Learning Plan explanation of learning material explanation of the task explanation of the task explanation of the assessment [1 × 3 × 50 minutes] (Specific conditions: The total number of blended 	Students read and study learning materials related to real number systems and their properties $[1 \times 3 \times 120$ minutes]		 PPT I learn (LMS Unand) (Specific condition : Zoom meeting, WA group, learning video) 	 Course Introduction Definition of complex numbers, properties of complex numbers, triangle inequality Cauchy- Schwarz inequality References: Main Reference 1. 	8%

					learning meetings is 40% of the total number of meetings)				
2	CLO-1 Ability to master theoretical concepts especially related to Complex number systems. (ILO- 2: PI-1, PI-2, PI-3)	 Accuracy in understanding related material Accuracy in answering assignment questions Neatness in completing assignments Originality of assignment results 	Non test Test Mid-Term exam: 5% Quizzes 1: 2%	Lectures and discussions $[1 \times 3 \times 50]$ minutes]		Students read and study materials from the main reference and others. $[1 \times 3 \times 120$ minutes]	 PPT I learn (LMS Unand) (Specific condition Zoom meeting, WA group, learning video) 	 Holomorphic function, Cauchy- Riemann equations, harmonic function antiderivative of a holomorphic function Reference: Main Reference 1. 	7%
3	CLO-2 Ability to develop mathematical thinking, starting from procedural understanding	 Accuracy in understanding related material Accuracy in answering 	Non test: Homework 1: 3% Test Mid-Term exam: 5%	Lectures and discussions $[1 \times 3 \times 50$ minutes]		Students read and study materials from the main reference and others.	 PPT I learn (LMS Unand) (Specific condition Zoom meeting, 	 Contour integrals Derivative antiderivative, conformal mapping 	8%

	to broad comprehensio n including exploration, logical reasoning, generalization, abstraction, and formal proof about contour integrals. (ILO-3 : PI-1, PI-2, PI-3)	 assignment questions Neatness in completing assignments Originality of assignment results 			[1 × 3 × 120 minutes]	WA group, learning video)	Reference: Main Reference 1.	
4	CLO-2 Ability to develop mathematical thinking, starting from procedural understanding to broad comprehensio n including exploration, logical reasoning, generalization, abstraction, and formal proof about contour integrals.	 Accuracy in understanding related material Accuracy in answering assignment questions Neatness in completing assignments Originality of assignment results 	Non test : Homework : 2% Test: Mid-Term exam: 15%	Lectures and discussions $[1 \times 3 \times 50$ minutes]	Students read and study materials from the main reference and others $[1 \times 3 \times 120$ minutes]	 PPT I learn (LMS Unand) (Specific condition : Zoom meeting, WA group, learning video 	 Cauchy's integral theorem, Green's theorem Reference: Main Reference 1. 	17%

	(ILO-3: PI-1, PI-2, PI-3 CLO-5 Ability to prove a complex mathematical statement using appropriate facts and methods. (ILO-6: PI 1 – 3)								
5	CLO-3 Ability to reconstruct, modifying, analyzing/str ucturally thinking about Cauchy integrals and their applications. (ILO-3 : PI-1, PI-2, PI-3)	 Accuracy in understanding related material Accuracy in answering assignment questions Neatness in completing assignments Originality of assignment results 	Non test: Test Mid-Term exam: 3% Quizzes 1: 3%	Lectures and discussions $[1 \times 3 \times 50]$ minutes]	Students read and study materials from the main reference and others $[1 \times 3 \times 120$ minutes]	•	PPT I learn (LMS Unand) (Specific condition : Zoom meeting, WA group, learning video)	 Derivative of a holomorphic function, Morera's theorem Reference: Main Reference 1. 	6%
6-7	CLO-3 Ability to reconstruct,	• Accuracy in understanding	Non test: Test	Lectures and discussions	Students read and study materials from	•	РРТ	• Taylor series,	4%

	modifying, analyzing/str ucturally thinking about Cauchy integrals and their applications. (ILO-3: PI-1, PI-2, PI-3)	related material • Accuracy in answering assignment questions • Neatness in completing assignments • Originality of assignment results	Mid-Term exam: 2% Quizzes 1: 2%	[2 × 3 × 50 minutes]	the main reference and others $[2 \times 3 \times 120$ minutes]	 I learn (LMS Unand) (Specific condition: Zoom meeting, WA group, learning video) 	 convergence of Taylor series Power series of holomorphic functions, Liouville's theorem, uniform limit of holomorphic functions Reference: Main Reference 1.
<u>8</u> 9	CLO-3 Ability to reconstruct, modifying, analyzing/str ucturally thinking about Cauchy integrals and their applications. (ILO-3 : PI-1, PI-2, PI-3)	 Accuracy in understanding related material Accuracy in answering assignment questions Neatness in completing assignments Originality of assignment results 	Non test : Test Final exam: 15%	MID-TE Lectures and discussions [1 × 3 × 50 minutes]	RM EXAM Students read and study materials from the main reference and others [1 × 3 × 120 minutes]	 PPT I learn (LMS Unand) (Specific condition: Zoom meeting, WA group, learning video) 	 Singular points, Riemann's Removable Singularities theorem, expansion around singular points Reference: Main Reference 1.

10-12	CLO-4 Ability to master theoretical concepts especially related to Meromorphic functions and residues, as well as Holomorphic functions. (ILO-2: PI-1, PI-2, PI-3) CLO-5 Ability to prove a complex mathematical statement using appropriate facts and methods. (ILO-6: PI 1 – 3)	 Neatness in completing assignments Originality of assignment results 	Non test: Homework 2: 3% Test Final exam: 10% Quizzes 2: 5%	Lectures and discussions [3 × 3 × 50 minutes]	and mat the refe othe [3 × min	3 × 120 nutes]	 PPT I learn (LMS Unand) (Specific condition: Zoom meeting, WA group, learning video) 	•	Laurent series Residue theorem, definition of simply connected holomorphic Examples of definite integral calculations	18%
13-15	CLO-4 Ability to master theoretical concepts especially	 Accuracy in understanding related material 	Non test: Homework : 2% Test	Lectures and discussions $[2 \times 3 \times 50$ minutes]	and mat the	dents read study terials from main erence and ers	 PPT I learn (LMS Unand) (Specific condition 	•	Infinite singularities several definitions of singularities of	17%

	related to Meromorphic functions and residues, as well as Holomorphic functions. (ILO-2 : PI-1, PI-2, PI-3) CLO-5 Ability to prove a complex mathematical statement using appropriate facts and methods. (ILO-6 : PI 1 – 3)	 Accuracy in answering assignment questions Neatness in completing assignments Originality of assignment results 	Final exam: 10% Quizzes 2: 5%		[2 × 3 × 120 minutes]	: Zoom meeting, WA group, learning video)	 holomorphic functions Definition of poles and zeroes Open Mapping Theorem 	
16				FINAL E	XAM		Total Weight	100%

1 credit = 50 minutes face-to-face meeting, 60 minutes structured study, 60 minutes independent study Each meeting duration is 3 credits = 3×50 minutes

Indicators, Criteria, and Assessment Weights

1. Assessment weight for each Assessment

NO	Assessment	Weight (%)
1	Mid-Term Exam	35
1		
2	Final Exam	35
3	Homework	10
4	Quizzes	20
	TOTAL	100

- 2. Assessment weight for Intended Learning Outcome
 - CLO-1: 15 %
 - CLO-2: 15 %

- CLO-3: 25 %
- CLO-4: 15 %
- CLO-5: 30 %

Assessment Plan Table:

			Asse	essment		
No.	CLO	Homework (%)	Quizzes (%)	Mid-Term Exam (%)	Final Exam (%)	Weight (%)
1	Ability to master theoretical concepts especially related to Complex number systems. (ILO-2 : PI-1, PI-2, PI-3)		Quizzes 1: 5	10		15
2	Ability to develop mathematical thinking, starting from procedural understanding to broad comprehension	Homework 1: 5		10		15

	including exploration, logical reasoning, generalization, abstraction, and formal proof about contour integrals. (ILO-3 : PI-1, PI-2, PI- 3)					
3	Ability to reconstruct, modifying, analyzing/structurally thinking about Cauchy integrals and their applications. (ILO-3 : PI-1, PI-2, PI-3)		Quizzes 1: 5	5	15	25
4	Ability to master theoretical concepts especially related to Meromorphic functions and residues, as well as Holomorphic functions. (ILO-2 : PI- 1, PI-2, PI-3)		Quizzes 2: 5		10	15
5	Ability to prove a complex mathematical statement using appropriate facts and	Homework 2: 5	Quizzes 2: 5	10	10	30

methods. (ILO-6 : PI-1 – 3)					
Total	10	20	35	35	100

Matrix of CLO and ILO

	ILO																				
CLO	1			2			3		4		5			6							
	PI			PI		PI		PI		PI			РІ								
	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	4	1	2	3	4	5
1				✓	✓	~															
2							✓	\checkmark	✓												
3							✓	✓	~												
4				✓	✓	~															
5										✓	✓	✓									
6																	\checkmark	\checkmark	\checkmark		