SEMESTER STUDY PLAN STOCHASTIC PROCESS (ELECTIVE COURSES)

DEPARTMENT OF MATHEMATICS AND DATA SCIENCE FACULTY OF MATHEMATICS AND NATURAL SCIENCES UNIVERSITAS ANDALAS

2024

1 Semester Study Plan

	STUDY FACULT	TER STUDY PLAN PROGRAM OF S2 MAT TY OF MATHEMATICS . RSITAS ANDALAS	HEMATICS AND NATURAL SCIENCES			
Course		Code	i-learn URL	Credits	Semester	Compilation Date
Stochastic Process	MAT 82	233	https://sci.ilearn.unand.ac.id	3	2	12 May 2024
Person in Charge	Study Pl	lan Creator		Head of Research Group	Head of Stud	dy Program
	Dr. Dod	i Devianto, M.Sc		Yudiantri Asdi, M.Sc	Dr. Ferra Ya	nuar
Intended Learning	ILO-Stu	dy Program				
Outcomes (ILO)	ILO-2	solving complex mat PI-1. Able to explain PI-2. Able to provide	tical concepts and applications thematical problems. basic mathematical concepts e examples that are relevant to ine solutions to simple problem	basic mathematical conc	repts	
	ILO-3	mathematics, statisti	veral theories comprehensively cs and combinatoric mathemat v theories used in related mathe	ics.	fields of ana	lysis, algebra, applied

	PI-2. Able to apply theory for development in related fields (advanced theory).
	PI-3. Able to use advanced theory in solving related mathematical problems.
ILO-4	Mastering scientific techniques and developing them in solving research problems through a multidisciplinary
	or interdisciplinary approach.
	PI-1. Able to use scientific techniques in solving research problems.
	PI-2. Able to analyze research problems.
	PI-3. Able to formulate theorems/models and prove their correctness.
	PI-4. Able to use several mathematical software to solve complex mathematical problems.
ILO-5	Able to work and conduct research in the field of mathematics and related fields of science in accordance with
	developments in current issues independently or collaboratively and communicate it academically.
	PI-1. Able to prove mathematical statements formally and correctly.
	PI-2. Able to use related techniques to conduct research
	PI-3. Able to communicate research results academically.
Course	e Learning Outcome (CLO)
CLO-	Students are able to explain the concepts of measure theory and probability theory in stochastic processes (ILO-
1	2: PI-1, PI-2, PI-3).
CLO-	Students are able to explain the concept of random variables, distribution functions and probability models and
2	their relation to the concept of Markov chains (ILO-3: PI-1, PI-2, PI-3).
CLO-	Students are able to explain the concept of the Poisson process and the renewal process as well as the queuing
3	model (ILO-3: PI-1, PI-2, PI-3).
3	model (ILO-3: PI-1, PI-2, PI-3).

	CLO- 4	Students are able to use the concepts of Brownian motion and Ito's stochastic calculus in stochastic differential equation models (ILO-4: PI-1, PI-2, PI-3, PI-4).
	CLO- 5	Students are able to reason intuitively and analytically and are able to express the results of their reasoning in writing, systematically and rigorously both individually and in groups (ILO-5: PI-1, PI-2, PI-3).
Brief description of Course	develog develog mather	urse applies Case Based Method (CBM). CBM is a learning method that uses cases as a medium for learning oment. Students explore, assess, interpret, synthesize, and information based on cases to produce an analysis and p a solution plan. Case-Solving Based Learning in this course provides knowledge about the concept of natical models based on probability which includes knowledge of probability spaces and probability models, v chains, Poisson processes, renewal processes, queue models, stochastic differential equations, and their tions.
Study Materials	 Ran Adv Adv Adv Brov 	oduction to measure theory and and probability theory. dom variable, special distributions and probability models. vanced model of Markov chains and transition probability matrix. vanced model of Poisson process, renewal process, and advanced queuing model. wnian motion and Ito stochastic calculus. hastic differential equations and their applications.
References	2. R. N	I. Ross. (1995). <i>Stochastic processes</i> (2 nd edition). John Wiley & Sons, New York. I. Bass. (2011). <i>Stochastic processes</i> (Cambridge Series in Statistical and Probabilistic Mathematics, Series Number Cambridge University Press, New York.
	Suppor	ting:

	 S. I. Resnick. (2005). Adventures in stochastic processes. Bit Z. Brzezniak and T. Zastawniak. (2000). Basic stochastic S. M. Ross. (2003). Introduction to probability models. Acad M. A. Pinsky and S. Karlin. (2011). An introduction to stochastic R. Durrett. (2018). Essentials of stochastic processes. Spring S. R. S. Varadhan. (2007). Stochastic processes (Courant L B. L. Nelson. (2010). Stochastic modeling: analysis and sim 										
Instructional Media	Software:	Hardware:									
	• LMS Unand (<u>http://sci.ilearn.unand.ac.id/</u>)	Computer/Laptop									
	• Zoom meeting	• Smartphones									
	• Whatsapp										
Team Teaching	Dr. Dodi Devianto, M.Sc										
Required courses	MAT81131 PROBABILITY THEORY										
Academic Norms	Follow the Academic Regulations of Undergraduate Progr	am, Universitas Andalas									
	(https://akademPI.unand.ac.id/images/2022-03-										
	30%20Peraturan%20Rektor%20Nomor%207%20Tahun%20	02022%20Penyelenggaraan%20PendidPlan-									
	khusus%20Bab%20II.pdf)										

Weekly Study Plan

Wee k	Course Outcome (2)	Indicators (3)	Form of Assessment			arning Activities Estimated Time]			Learning Materials	Weight (11)
(1)			(4)	Synchro	onous	Asynchr	onous		[Reference] (10)	
				Face to Face Offline (5)	Face to Face Online (6)	Individual (7)	(8)		()	
1-2	CLO 1: Students are able to explain the concepts of measure theory and probability theory in stochastic processes (ILO- 2: PI-1, PI-2, PI-3).	the college contract	Mid-term exam (10%) Independent assignment (5%)	Class: - introduction of semester learning plan - discussion about course material [2 x 3 x 50 minutes]		 Students find references and study material on the concepts of measure theory and probability (probability space and set of sigma-field in relation to stochastic processes. Independent work [2 x 3 x 120 minutes] 		(ilearn UNAND)	 Introduction to Lectures (Assessment, Semester Learning Plan, Syllabus, Tuition Contract) Basic concepts of measure theory. Basic concepts of probability theory. Basic concepts of stochastic processes 	15%

3-7	CLO 2: Students are able to explain the concept of random variables, distribution functions, and probability models and their relation to the concept of Markov chains (ILO-3: PI-1, PI-2, PI-3).	explain the concept of adom variables, tribution functions, d probability models d their relation to the ncept of Markov chains		Class: - explanation of concepts - discussion about course materials [5 x 3 x 50 minutes]	d-term exam	 Students find the references and study of random variables, distribution functions with their properties, and Markov chains. Independent work [5 x 3 x 60 minutes] 	Students's discussion in groups [5x3x60] minutes	LMS (ilearn UNAND)	 Basic concepts of random variables and distribution functions and their properties. Probability model Advanced Markov chain model 	20%
9-11	CLO 3: Students are able to explain the concept of the Poisson process, the renewal process, and the queuing model (ILO-3: PI-1, PI-2, PI-3).	 Accuracy in understanding of related material Accuracy in answering assignment questions Neatness in completing assignments Originality of assignment results 	Final exam (5%) Participation (5%) Assignment (10%)	Class: - Explanation of the concepts, - Discussion about course materials [3 x 3 x 50 minutes]		 Students find references and study material. Independent work [3x 3 x 60 minutes] 	Students discuss in groups [3x3x60]	• LMS	 The concept of the Poisson process and the renewal process (the process of birth and death). Advanced queue model concept with additional effects (bulking, 	

								jokeying, stucking).	
	CLO 4: Students are able to use the concepts of Brownian motion and Ito's stochastic calculus in stochastic differential equation models (ILO-4: PI-1, PI-2, PI-3, PI-4).	 Accuracy in understanding of related material Accuracy in answering assignment questions Neatness in completing assignments Originality of assignment results 	Final exam (5%) Assignment (10%)	Class: - Explanation of the concepts, - Discussion about course materials [2 x 3 x 50 minutes]	 Students find references and study material Independent work [2x 3 x 60 minutes] 	Students discuss in groups [2x3x60]	• LMS	 Brownian concept of motion and its properties and Ito stochastic calculus. The concept of stochastic differential equations and their applications. 	15%
14-15	CLO 5: Students are able to reason intuitively and analytically and are able to express the results of their reasoning in writing, systematically and rigorously both individually and in		Assignment (15%) Final exam (10%) Participation (5%)	 Practice: Discussion about course materials. Presentation group [2 x 3 x 50 minutes] 	Students find out references and study material [2x 3 x 60 minutes]	Students discuss in groups [2x3x60 minutes]	• LMS	 Selected stochastic models with special cases. Implementatio n of the stochastic model of choice and its application. 	30%

	groups (ILO-5: PI-1, PI-2, PI-3).	• Originality of assignment results													
16		Final exam													

II. Indicators, Criteria, and Proportions of Assessment

NO	FORM OF ASSESSMENT	PROPORTION
		(%)
1	Assignment	50%
2	Participation	10%
3	Mid-term exam	20 %
4	Final exam	20%
	TOTAL	100

Assessment proportion for each Course Learning Outcome (CLO):

- CLO 1: 15 %
- CLO 2: 20%
- CLO 3: 20 %
- CLO 4: 15 %

- CLO 5: 30 %

III. Assessment Plan Table

Form of assessment	Final	Mid-term	Assignments	Participation	Total of
Course Learning Outcomes (CLO)	exam	exam	Assignments	1 articipation	Proportion
1. Students are able to explain the concepts of measure theory and probability theory in stochastic processes (ILO-2: PI-1, PI-2, PI-3).		10%	5%		15%
2. Students are able to explain the concept of random variables, distribution functions, and probability models and their relation to the concept of Markov chains (ILO-3: PI-1, PI-2, PI-3).		10%	10%		20%
3. Students are able to explain the concept of the Poisson process, the renewal process, and the queuing model (ILO-3: PI-1, PI-2, PI-3).	5%		10%	5%	20%
4. Students are able to use the concepts of Brownian motion and Ito's stochastic calculus in stochastic differential equation models (ILO-4: PI-1, PI-2, PI-3, PI-4).	5%		10%		15%

5. Students are able to reason intuitively and analytically and are able to express the results of their reasoning in writing systematically and rigorously, both individually and in groups (ILO-5: PI-1, PI-2, PI-3).	10%		15%	5%	30%
Total of Proportion	20%	20%	50%	10%	100%

Matrix of CLO and ILO

		ILO																
CLO	1 2				3			4			5			6				
	PI		PI		PI			PI			PI			PI				
	1	2	1	2	3	1	2	3	1	2	3	4	1	2	3	1	2	3
1			\checkmark	\checkmark	\checkmark													

2			✓	\checkmark	✓									
3			√	\checkmark	√									
4						√	\checkmark	✓	\checkmark					
5										\checkmark	\checkmark	\checkmark		