Module Description/Course Syllabi

Study Programme: Master of Mathematics

parent, and	Faculty of Mathematics and Natural Sciences Universitas Andalas
1. Course n	number and name
MAT82245	Discrete Control Theory
2. Credits a	nd contact hours/Number of ECTS credits allocated
3 sks / 4,53	ECTS
3. Instructo	ors and course coordinator
1. Prof. Dr.	Muhafzan
4. Text book	k, title, author, and year
2. A. V. Op	penheim, R. W. Schaffer, J. R. Buck, Discrete Time Signal g, Prentice Hall, New Jersey, 1999
5. Recomm	ended reading and other learning resources/tools
Z. M. Buch New York,	nevats, L. T. Gruyitch, Linear Discrete-Time Systems, CRC Press, 2018
6. Specific	course information

A. Brief description of the content of the course (catalog description)

The lecture begins by introducing the discrete linear control system problems in various real phenomena, followed by deepening aspects of the system of linear difference equations; such as the use of Z transformations, determination of discrete state transition matrices and solving systems of linear difference equations. The core

of this lecture is the analysis of control systems in discrete state space, such as controllability, observability, stability, canonical form, realization and pole placement. In addition, the use of Matlab software to detect controllability, observability and other aspects is also introduced.
This course is equipped with self-learning activities through question exercises, discussion/review of material, and other forms of learning. Furthermore, to meet the demands of global developments in the mastery of technology for a master of mathematics, participants in this course are also equipped with the expertise to use Matlab software related to the discrete linear control systems
B. Prerequisites or co-requisites
-
C. Indicate whether a required or elective course in the program
Elective
D. Level of course unit (according to EQF: first cycle Bachelor, second cycle Master)
Second Cycle Master
E. Year of study when the course unit is delivered (if applicable)
1 st year
F. Semester when the course unit is delivered
Even Semester
G. Mode of delivery (face-to-face, distance learning)
Face to face
L

7. Intended Learning Outcomes

- ILO-1: Possesses a good ethics and integrity
 - PI-1: Possess academic ethics
 - PI-2: Demonstrate academic integrity
- ILO-3: Comprehensive mastery of one or several theories for development in the fields of analysis, algebra, applied mathematics, statistics and combinatorial mathematics
 - PI-2: Able to identify complex mathematical problems
 - PI-3: Able to solve complex mathematical problems
- ILO-4: Mastering scientific techniques and developing them in solving research problems through multidisciplinary or interdisciplinary approaches
 - PI-1: Able to apply mathematical techniques in research problem-solving.
 - PI-2: Able to analyse research problems.
 - PI-4: Able to use various mathematical software to solve complex mathematical problems.
- ILO-5: Able to work and conduct research in the field of mathematics and related fields of science by developing the latest issues independently or collaboratively and communicating them academically.
 - PI-1: Capable of formally and correctly proving mathematical statements.
 - PI-2: Able to employ relevant techniques for conducting research.
 - PI-3: Capable of communicating research findings in an academic manner

8. Course Learning Outcomes

- 1. Ability to recognize the discrete linear control system problems in various real phenomena
- 2. Mastering the basic aspects of the discrete system of linear differential equations; such as the use of Z transformation, determination of the state transition matrix and solving the system of linear difference equations
- 3. Mastering the modeling of physical systems in the form of discrete state space models, transfer function models and block diagram models
- 4. Ability to analyze the discrete state space models; such as controllability, observability, canonical form, realizability and stability of discrete linear system

- 5. Ability to poles assignment for discrete linear system
- 6. Ablility to use Matlab software to solve problems in discrete linear control systems

9. Brief list of topics to be covered

Discrete linear control system problems in some real phenomena; some basic aspects of systems of linear difference equations, including the use of Z transform, determination of discrete state transition matrices and solving systems of linear difference equations; modeling of physical systems in the form of discrete state space models, transfer function models and block diagram models; controllability, observability, canonical form, realization and stability; pole placement for discrete linear systems; use of Matlab software to solve problems in discrete linear control systems

10. Learning and teaching methods

Directed Learning, Teacher Centered Learning

11. Language of instruction

Indonesia and English

12. Assessment methods and criteria

Summative Assessment:

- 1. Mid-term exam: 40%
- 2. Final exam: 40%
- 3. Assignment (home work): 20%

SEMESTER STUDY PLAN DISCRETE CONTROL THEORY / MAT82245 (ELECTIVE COURSE)

DEPARTMENT OF MATHEMATICS AND DATA SCIENCE FACULTY OF MATHEMATICS AND NATURAL SCIENCES UNIVERSITAS ANDALAS

2024

SEMESTER STUDY PLAN (SSP) BACHELOR PROGRAM OF MATHEMATICS FACULTY OF MATHEMATICS AND NATURAL SCIENCES UNIVERSITAS ANDALAS

Course I	Name		Course (Code	URL I-I	earn	Credits	Semester	Compilation Date	
Discrete Cont	rol Theor	y	MAT82	2245	https://sci.ilearr	n.unand.ac.id	3	2	5 May 2024	
			Stı	udy Pla	n Creator	Head of Re	esearch Group	Head of	Study Program	
Person In	Charge		Pro	of. Dr. N	Muhafzan	Dr. Ahma	ad Iqbal Baqi	Prof. D	r. Ferra Yanuar	
	Intende	d Learning O	utcomes				1 1			
Intended Learning	ILO-1	Possesses a		ics and	integrity					
Outcomes (ILO) and		PI-1: Posses								
Performance Indicator (PI)		PI-2: Demo								
(11)	ILO-3				0 1	eories for dev	elopment in the f	fields of anal	ysis, algebra,	
					ics and combinat			•	, , , ,	
					ex mathematical					
		PI-3: Able t	o solve co	mplex:	mathematical pr	oblems				
	ILO-4	Mastering	scientific te	echniqu	ues and developi	ng them in so	lving research pi	roblems thro	ugh	
		multidiscip	olinary or i	interdi	sciplinary approa	aches				
		PI-1: Able	to apply n	nathem	atical techniques	chniques in research problem-solving.				
		PI-2: Able	to analyse	resear	ch problems.					
								matical problems.		
	ILO-5 Able to work and conduct research in the field of mathematics and related fields of								eveloping the latest	
		-	•		oratively and com	_	•			
		_		-	correctly proving					
					techniques for con ng research finding	•				
	Course	Learning Out		iumcan	ng research midnig	gs III all acadell	inc manner			
				rete linear contro	ol system prob	olems in various	real phenom	ena (II.O-1: II.O-3:		
Ability to recognize the discrete linear control system problems in various real ILO-4)							- III promoni	(223 2, 223 0,		
	Mastering the basic aspects of the discrete system of linear differential equations; such as the us						se of Z			
	2			ination	of the state transit	ion matrix and	l solving the syster	n of linear dif	ference equations	
		(ILO-3: ILO	-4; ILO-5)							

state transition matrices and solving systems of linear difference equations. The core of this lecture is the analysis of control systems in discrete state space, such as controllability, observability, stability, canonical form, realization and pole placement. In addition, the use of Matlab software to detect controllability, observability and other aspects is also introduced. This course is equipped with self-learning activities through question exercises, discussion/review of material, and other forms of learning. Furthermore, to meet the demands of global developments in the mastery of technology for a master of mathematics, participants in this course are also equipped with the expertise to use Matlab software related to the discrete linear control systems 1. Discrete linear control system problems in some real phenomena 2. Some basic aspects of systems of linear difference equations, including the use of Z transform, determination of discrete state transition matrices and solving systems of linear difference equations. 3. Modeling of physical systems in the form of discrete state space models, transfer function models and block diagram models 4. Controllability, observability, canonical form, realization and stability. 5. Pole placement for discrete linear systems 6. Use of Matlab software to solve problems in discrete linear control systems References Main: [1].G. Gu, Discrete Time Linear Systems, Springer, London, 2012. Additional: [2]. A. V. Oppenheim, R. W. Schaffer, J. R. Buck, Discrete Time Signal Processing, Prentice Hall, New Jersey, 1999. Learning Media 1. Limit Umand (http://fmipa.ilearn.unand.ac.id/) 4. Computer/Laptop 5. Smartphone										
Pack										
The lecture begins by introducing the discrete linear control system problems in various real phenomena, followed by deepening aspects of the system of linear difference equations; such as the use of Z transformations, determination of discrete state transition matrices and solving systems of linear difference equations. The core of this lecture is the analysis of control systems in discrete state space, such as controllability, observability, canonical form, realization and pole placement. In addition, the use of Matlab software to detect controllability, observability and other aspects is also introduced. This course is equipped with self-learning activities through question exercises, discussion/review of material, and other forms of learning. Furthermore, to meet the demands of global developments in the mastery of technology for a master of mathematics, participants in this course are also equipped with the expertise to use Matlab software related to the discrete linear control systems 1. Discrete linear control systems problems in some real phenomena 2. Some basic aspects of systems of linear difference equations, including the use of Z transform, determination of discrete state transition matrices and solving systems of linear difference equations. 3. Modeling of physical systems in the form of discrete state space models, transfer function models and block diagram models 4. Controllability, observability, canonical form, realization and stability. 5. Pole placement for discrete linear systems 6. Use of Matlab software to solve problems in discrete linear control systems References Main: [1]. G. G. Discrete Time Linear Systems, Springer, London, 2012. Additional: [2]. A. V. Oppenheim, R. W. Schaffer, J. R. Buck, Discrete Time Signal Processing, Prentice Hall, New Jersey, 1999. Learning Media Software: 1. Hardware: 1. Lardware: 1. Lardware: 1. Lardware: 1. Computer/Laptop 2. Commeeting										
The lecture begins by introducing the discrete linear control system problems in various real phenomena, followed by deepening aspects of the system of linear difference equations; such as the use of Z transformations, determination of discrete state transition matrices and solving systems of linear difference equations. The core of this lecture is the analysis of control systems in discrete state space, such as controllability, observability, stability, canonical form, realization and pole placement. In addition, the use of Matlab software to detect controllability, observability and other aspects is also introduced. This course is equipped with self-learning activities through question exercises, discussion/review of material, and other forms of learning. Furthermore, to meet the demands of global developments in the mastery of technology for a master of mathematics, participants in this course are also equipped with the expertise to use Matlab software related to the discrete linear control systems 1. Discrete linear control system problems in some real phenomena 2. Some basic aspects of systems of linear difference equations, including the use of Z transform, determination of discrete state transition matrices and solving systems of linear difference equations. 3. Modeling of physical systems in the form of discrete state space models, transfer function models and block diagram models 4. Controllability, observability, canonical form, realization and stability. 5. Pole placement for discrete linear systems 6. Use of Matlab software to solve problems in discrete linear control systems References Main: [1]. G. Gu, Discrete Time Linear Systems, Springer, London, 2012. Additional: [2]. A. V. Oppenheim, R. W. Schaffer, J. R. Buck, Discrete Time Signal Processing, Prentice Hall, New Jersey, 1999. **Earning Media** Software: • LIMS Unand (http://fmipa.ilearn.unand.ac.id/) • Zoom meeting **Opportunity Indianation of the processing of the processing of the processing of the processing of the processi		5 Ability to poles assignment for discrete linear system (ILO-3: ILO-4; ILO-5)								
deepening aspects of the system of linear difference equations; such as the use of Z transformations, determination of discrete state transition matrices and solving systems of linear difference equations. The core of this lecture is the analysis of control systems in discrete state space, such as controllability, observability, canonical form, realization and pole placement. In addition, the use of Matlab software to detect controllability, observability, and other aspects is also introduced. This course is equipped with self-learning activities through question exercises, discussion/review of material, and other forms of learning. Furthermore, to meet the demands of global developments in the mastery of technology for a master of mathematics, participants in this course are also equipped with the expertise to use Matlab software related to the discrete linear control systems 2. Some basic aspects of systems of linear difference equations, including the use of Z transform, determination of discrete state transition matrices and solving systems of linear difference equations. 3. Modeling of physical systems in the form of discrete state space models, transfer function models and block diagram models 4. Controllability, observability, canonical form, realization and stability. 5. Pole placement for discrete linear systems 6. Use of Matlab software to solve problems in discrete linear control systems References Main: [1]. G. Gu, Discrete Time Linear Systems, Springer, London, 2012. Additional: [2]. A. V. Oppenheim, R. W. Schaffer, J. R. Buck, Discrete Time Signal Processing, Prentice Hall, New Jersey, 1999. Learning Media Software: • LMS Unand (http://fmipa.ilearn.unand.ac.id/) • Zoom meeting Software: • Computer/Laptop • Smartphone		6 Ablility to use Matlab software to solve problems in discrete linear control systems (ILO-3: ILO-4; ILO-5)								
of learning. Furthermore, to meet the demands of global developments in the mastery of technology for a master of mathematics, participants in this course are also equipped with the expertise to use Matlab software related to the discrete linear control systems 1. Discrete linear control system problems in some real phenomena 2. Some basic aspects of systems of linear difference equations, including the use of Z transform, determination of discrete state transition matrices and solving systems of linear difference equations. 3. Modeling of physical systems in the form of discrete state space models, transfer function models and block diagram models 4. Controllability, observability, canonical form, realization and stability. 5. Pole placement for discrete linear systems 6. Use of Matlab software to solve problems in discrete linear control systems References Main:	Brief Description	deepening aspects of the system of linear difference equations; such as the use of Z transformations, determination of discrete state transition matrices and solving systems of linear difference equations. The core of this lecture is the analysis of control systems in discrete state space, such as controllability, observability, stability, canonical form, realization and pole placement.								
2. Some basic aspects of systems of linear difference equations, including the use of Z transform, determination of discrete state transition matrices and solving systems of linear difference equations. 3. Modeling of physical systems in the form of discrete state space models, transfer function models and block diagram models 4. Controllability, observability, canonical form, realization and stability. 5. Pole placement for discrete linear systems 6. Use of Matlab software to solve problems in discrete linear control systems References Main: [1]. G. Gu, Discrete Time Linear Systems, Springer, London, 2012. Additional: [2]. A. V. Oppenheim, R. W. Schaffer, J. R. Buck, Discrete Time Signal Processing, Prentice Hall, New Jersey, 1999. Learning Media Software: • LMS Unand (http://fmipa.ilearn.unand.ac.id/) • Computer/Laptop • Smartphone		This course is equipped with self-learning activities through question exercises, discussion/review of material, and other forms of learning. Furthermore, to meet the demands of global developments in the mastery of technology for a master of mathematics, participants in this course are also equipped with the expertise to use Matlab software related to the discrete								
References Main:	Course Materials	 Some basic aspects of systems of linear difference equations, including the use of Z transform, determination of discrete state transition matrices and solving systems of linear difference equations. Modeling of physical systems in the form of discrete state space models, transfer function models and block diagram models Controllability, observability, canonical form, realization and stability. Pole placement for discrete linear systems 								
Learning Media Software: LMS Unand (http://fmipa.ilearn.unand.ac.id/) Zoom meeting Hardware: Computer/Laptop Smartphone	References	Main: [1]. G. Gu, Discrete Time Linear Systems, Springer, London, 2012. Additional:								
 LMS Unand (http://fmipa.ilearn.unand.ac.id/) Zoom meeting Computer/Laptop Smartphone 	Larning Madia									
(http://fmipa.ilearn.unand.ac.id/) • Zoom meeting • Smartphone	Learning Media									
Zoom meeting										
		<u> </u>								
• Whatsapp										

Team Teaching	1. Prof. Dr. Muhafzan
Assessment	Homework(assignment), Mid-Term exam, Final exam
Required courses	-

Weekly Study Plan

					Activit		Subject,	Weight		
Week/ Meet	Course Outcomes (2)	Indicator (3)	Assessment (4)	Synch	Synchronus*		Asynchronus**		references (10)	(11)
(1)	Guiconics (2)	(6)		Face to face Offline (5)	Face to face Online (6)	Individual (7)	Collaborati on (8)			
1	CLO-1 Able to identify the discrete linear control system problems and understand basic concepts, definitions, classification of the discretelinear control system problems	 Discipline in implementing the lecture contract Accuracy in understanding related material Accuracy in answering assignment questions Neatness of assignment work Originality of assignment results 	Assignment: 3% Mid term: 7%	Teaching and discussion: - Explanation of Semester Learning Plan - explanation of learning material - explanation of the task - explanation of the assessment [1 × 3 × 50 minutes]	Teaching and discussion: - Explanation of Semester Learning Plan - explanation of learning material - explanation of the task - explanation of the assessment 1 × 3 × 50 minutes]	 Students read and study learning materials Students do assignments independently [1×3×60 minutes] 		• PPT • I learn (LMS Unand) (Specific condition: Zoom meeting, WA group, learning video)	 Assessment Rules, SSP, Course Contract Basic concept Examples of discrete linear control system problems [1, 2] 	10%
2-3	CLO-2 Able to understand the basic aspects of	Accuracy in understanding related material	Assignment: 1% Mid term: 15%	• Lecture: - explanation of concepts - discussion,	• Lecture: - explanation of concepts - discussion,	• Students read and study learning materials		• PPT • I learn (LMS Unand)	Basic aspects of systems of linear difference	16%

	the system of linear difference equations, including the use of <i>Z</i> transformations, determination of state transition matrices and solving the system of linear difference equations.	 Accuracy in answering assignment questions Neatness of assignment work Originality of assignment results 		question and answer of lecture material [2 × 3 × 50 minutes]	question and answer of lecture material [2 × 3 × 50 minutes]	• Students do assignments independently [2×3×60 minutes]	• (Specific condition: Zoom meeting, WA group, learning video)	equations; such as the use of Z transform, determination of state transition matrices and solving systems of linear difference equations. [1]	
4-5	CLO-3 Able to model physical systems in the form of discrete state space models, transfer function models and block diagram models.	 Accuracy in understanding related material Accuracy in answering assignment questions Neatness of assignment work Originality of assignment results 	Assignment : 5% Mid term: 14%	• Lecture: - explanation of concepts - discussion, question and answer of lecture material [2 × 3 × 50 minutes]	• Lecture: - explanation of concepts - discussion, question and answer of lecture material [2 × 3 × 50 minutes]	 Students read and study learning materials Students do assignments independently [2×3×60 minutes] 	 PPT I learn (LMS Unand) (Specific condition: Zoom meeting, WA group, learning video) 	Modeling of physical systems in the form of discrete state space models, transfer function models, and block diagram models [1]	19%
6-7	CLO-4 Able to understand the concept of controllability of discrete linear system, controllability test criteria CLO 6 Able to use Matlab software to solve	 Accuracy in understanding related material Accuracy in answering assignment questions Neatness of assignment work Originality of assignment results 	Assignment: 1% Mid term: 4%	• Lecture: - explanation of concepts - discussion, question and answer of lecture material [2 × 3 × 50 minutes]	Lecture: explanation of concepts discussion, question and answer of lecture material [2 × 3 × 50 minutes]	 Students read and study learning materials Students do assignments independently [2×3×60 minutes] 	• PPT • I learn (LMS Unand) (Specific condition: Zoom meeting, WA group, learning video)	Controllability of discrete linear system [1, 2]	5%

	controllability problems								
8-9	1				MID-TERM EX	KAM			
10-11	CLO-4 Able to understand the concept of observability of discrete linear systems, canonical form, realization and related test criteria. CLO 6 Able to use Matlab software to solve observability, canonical form, and realization problems.	 Accuracy in understanding related material Accuracy in answering assignment questions Neatness of assignment work Originality of assignment results 	Assignment: 5% Final term: 15%	• Lecture: - explanation of concepts - discussion, question and answer of lecture material [2 × 3 × 50 minutes]	• Lecture: - explanation of concepts - discussion, question and answer of lecture material [2 × 3 × 50 minutes]	 Students read and study learning materials Students do assignments independently [2×3×60 minutes] 	 PPT I learn (LMS Unand) (Specific condition: Zoom meeting, WA group, learning video) 	Observability of discrete linear systems, canonical form, realization and related test criteria. [1, 2]	20%
12-13	CLO-4 Able to understand the stability concept of discrete linear system	 Accuracy in understanding related material Accuracy in answering assignment questions Neatness of assignment work Originality of assignment results 	Assignment: 5% Final term: 15%	• Lecture: - explanation of concepts - discussion, question and answer of lecture material [2 × 3 × 50 minutes]	• Lecture: - explanation of concepts - discussion, question and answer of lecture material [2 × 3 × 50 minutes]	 Students read and study learning materials Students do assignments independently [2×3×60 minutes] 	 PPT I learn (LMS Unand) (Specific condition: Zoom meeting, WA group, learning video) 	Stability of discrete linear system. [1, 2]	20%
14-16	CLO-5 Able to poles assignment for discrete linear	Accuracy in understanding related material	Assignment: 5% Final term: 15%	• Lecture: - explanation of concepts - discussion,	• Lecture: - explanation of concepts - discussion,	• Students read and study learning materials	• PPT • I learn (LMS Unand)	Pole placement for discrete linear systems	10%

	system	 Accuracy in answering assignment questions Neatness of assignment work Originality of assignment results 	question and answer of lecture material [2 × 3 × 50 minutes]	question and answer of lecture material [2 × 3 × 50 minutes]	• Students do assignments independently [2×3×60 minutes]	pecific condition: Zoom meeting, WA group, learning video)	[1, 2]	
							Total Weight	100%
17-18				FINAL EXA	M			

1 credit = 50 minutes face-to-face meeting, 60 minutes structured study, 60 minutes independent study Each meeting duration is 2 credits = 2×50 minutes

Indicators, Criteria, and Assessment Weights

1. Assessment weight for each Assessment

NO	Assessment	Weight (%)
1	Mid-Term Exam	40
2	Final Exam	40
3	Assignment (Homework)	20
	TOTAL	100

2. Assessment weight for Intended Learning Outcome

• CLO-1: 10 %

• CLO-2: 20 %

• CLO-3: 20 %

• CLO- 4: 20 %

• CLO-5: 20 %

• CLO-6:10%

Assessment Plan Table:

No.	CLO		Assessment		Weigth (%)
No.	CLO	Homework (%)	Mid-Term Exam (%)	Final Exam (%)	vveigtn (%)
1	Ability to recognize the discrete linear control	2	4	4	10

	system problems in various real phenomena (ILO-1: ILO-3: ILO-4)				
2	Mastering the basic aspects of the discrete system of linear differential equations; such as the use of Z transformation, determination of the state transition matrix and solving the system of linear difference equations (ILO-3: ILO-4; ILO-5)	4	8	8	20
3	Mastering the modeling of physical systems in the form of discrete state space models, transfer function models and block diagram models (ILO-3: ILO-4; ILO-5)	4	8	8	20
4	Ability to analyze the discrete state space models; such as controllability, observability, canonical form, realizability and stability of discrete linear system (ILO-3: ILO-4; ILO-5)	4	8	8	20
5	Ability to poles assignment for discrete linear system (ILO-3: ILO-4; ILO-5)	4	8	8	20
6	Ablility to use Matlab software to solve problems in discrete linear control systems (ILO-3: ILO-4; ILO-5)	2	4	4	10
	Total	20	40	40	100