Module Description/Course Syllabi

Study Programme : Magister of Mathematics Faculty of Mathematics and Natural Sciences. Universitas Andalas

1. Course number and name

MAT81231 Time Series Analysis

2. Credits and contact hours/Number of ECTS credits allocated 3 / 4,50 ECTS

3. Instructors and course coordinator

- 1. Dr. Dodi Devianto, M.Sc
- 2. Dr. Maiyastri, M.Sc

4. Text book, title, outhor, and year

- a. R. S. Tsay. (2013). *Multivariate Time Series Analysis: With R and Financial Applications*. Wiley, New York. ISBN 978-1118617908.
- b. S. G. Makridakis, S. C. Wheelwright, and R. J. Hyndman. (2008). Forecasting: Methods and Application (3rd Edition). John Wiley & Sons, New York. ISBN 978-0471532330.
- c. P. J. Brockwell and R. A. Davis. (2009). *Time Series: Theory and Methods* (2nd Edition). Springer, New York. ISBN 978-1441903198.

5. Recommended reading and other learning resources/tools

- a. C. Chatfield. (2003). *The Analysis of Time Series: An Introduction* (3rd Edition). Chapman and Hall, London. ISBN 978-0203491683.
- b. G. Kitagawa. (2010). *Introduction to Time Series Modeling*. Chapman & Hall/CRC, Boca Raton. ISBN 978-1584889212.
- c. W. S. Wei. (2006). *Time Series Analysis: Univariate and Multivariate Method* (2nd Edition). Pearson Addison-Wesley, New York. ISBN 978-0321322166.
- d. G. E. P. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung. (2015). *Time Series Analysis. Forecasting and Control.* Wiley, New York. ISBN 978-1118675021.
- e. J. D. Cryer and K. Chan. (2010). *Time Series Analysis with Application in R*. Springer, USA. ISBN 978-0387759586
- f. A. Gharehbaghi. (2023). *Deep Learning in Time Series Analysis*. CRC Press, New York. ISBN 978-0367321789.
- g. B. Auffarth. (2021). *Machine Learning for Time-Series with Python: Forecast, predict, and detect anomalies with state-of-the-art machine learning methods*. Packt Publishing, New York. ISBN 978-1801819626.
- h. S. Sharma and V. Kumar. (2019). Neural Network and Fuzzy Time Series: Forecasting using neural network and fuzzy time. LAP LAMBERT Academic Publishing, London. ISBN 978-6200284990.

6. Specific course information

A. Brief description of the content of the course (catalog description)

This course applies Case Based Method (CBM). CBM is a learning method that uses cases as a medium for learning development. Students explore, assess, interpret, synthesize, and information based on cases to produce an analysis and develop a solution plan. Case-Solving Based Learning in this course provides knowledge about the concepts of time series mathematical models which include the basic concepts of time series and autoregressive models, deterministic and stochastic time series models, classical and hybrid models.

B. Prerequisites or co-requisites

MAT81131 Probability Theory

C. Indicate whether a required or elective course in the program Elective Course

D. Level of course unit (according to EQF: first cycle Bachelor, second cycle Master) Second Cycle master

E. Year of study when the course unit is delivered (if applicable) 2nd Year

F. Semester when the course unit is delivered

Third Semester

G. Mode of delivery (face-to-face, distance learning)

Mixture (Face to face and Distance learning)

7. Intended Leening Outcomes

ILO-2: Mastering mathematical concepts and applications (real analysis, advanced linear algebra, and statistics) in solving complex mathematical problems.

PI-1: Able to explain mathematical concepts (real analysis, advanced linear algebra, and statistics).

PI-2: Able to provide examples that are relevant to the basic concepts of mathematics

PI-3: Able to determine simple problem solutions using basic mathematical concepts. ILO-3: Able to master one or several mathematical problems in analysis, algebra, applied mathematics, statistics and combinatorics.

PI-1: Able to identify theories used in related mathematical problems.

PI-2: Able to apply theories for advancement in related fields (advanced theory).

PI-3: Able to use advanced theory in solving related mathematical problems.

ILO-4: Mastering scientific techniques and developing them in solving research problems through multidisciplinary or interdisciplinary approaches.

PI-1: Able to apply mathematical techniques in research problem-solving.

PI-2: Able to analyze research problems.

PI-3: Able to formulate theorems/models and prove their validity.

PI-4: Able to use various mathematical software to solve complex mathematical problems.

ILO-5: Able to work and conduct research in mathematics and related fields of science

by developing the latest issues independently or collaboratively and communicating them academically.

PI-1. Capable of formally and correctly proving mathematical statements.

PI-2. Able to employ relevant techniques for conducting research.

PI-3. Capable of communicating research findings academically.

8. *Course Learning Outcomes ex. The student will be able to explain the significance of current research about a particular topic.*

- 1. Students are able to explain the concept of time series analysis in statistical studies. (ILO-2: PI-1, PI-2, PI-3)
- 2. Students are able to use advanced time series models with several classical model approaches. (ILO-3: PI-1, PI-2, PI-3)
- 3. Students are able to build a hybrid model of time series data with a fuzzy approach and artificial intelligence. (ILO-3: PI-1, PI-2, PI-3)
- 4. Students are able to use software using SPSS, Minitab, Eviews, R and Python applications in the process of estimating model parameters. (ILO-4: PI-1, PI-2, PI-3, PI-4)
- 5. Students are able to reason intuitively and analytically and are able to express the results of their reasoning in writing, systematically and rigorously. (ILO-5: PI-1, PI-2, PI-3)

9. Brief list of topics to be covered

- 1. Basic concepts of time series and autoregressive models.
- 2. Deterministic and stochastic time series models.
- 3. Preferred time series models in the form of volatility, seasonal, long memory and mixed models.
- 4. Hybrid fuzzy time series and artificial neural networks.

10. Learning and teaching methods

Presentation, Small Group Discussion, Directed Learning.

11. Language of instruction

Bahasa Indonesia

12. Assessment methods and criteria

Summative Assessment :

- 1. Assignments: 50%
- 2. Participations: 10%
- 3. Midterm exam: 20%
- 4. Final exam : 20%

Formative Assessment:

- 1. Thumb up and thumb down
- 2. Minutes paper

SEMESTER STUDY PLAN TIME SERIES ANALYSIS (ELECTIVE COURSES)

DEPARTMENT OF MATHEMATICS AND DATA SCIENCE FACULTY OF MATHEMATICS AND NATURAL SCIENCES UNIVERSITAS ANDALAS

2023

1 Semester Study Plan

UNIVERSITA'S ANDALAS	SEMEST STUDY I FACULT UNIVER	EMESTER STUDY PLAN TUDY PROGRAM OF S2 MATHEMATICS ACULTY OF MATHEMATICS AND NATURAL SCIENCES NIVERSITAS ANDALAS SEMESTER STUDY PLAN												
Course		Code	i-learn URL	Credits	Semester	Compilation Date								
TIME SERIES ANALYSIS	MAT 81231		http://sci.ilearn.unand.ac.id	3	3	November 01, 2023								
Person in Charge	Study Pl	an Creator		Head of Research Group	Head of Study Program									
r erson in Charge	Study II			-										
r erson ni Charge	1. Dr. D 2. Dr. M	odi Devianto, N laiyastri, M.Sc	I.Sc	Yudiantri Asdi, M.Sc	Dr. Ferra Ya	nuar								
Intended Learning	1. Dr. D 2. Dr. M ILO-Stuc	odi Devianto, M laiyastri, M.Sc ly Program	I.Sc	Yudiantri Asdi, M.Sc	Dr. Ferra Ya	nuar								
Intended Learning Outcomes (ILO) and	1. Dr. D 2. Dr. M ILO-Stud ILO-2	odi Devianto, M Iaiyastri, M.Sc Iy Program Mastering mat	I.Sc hematical concepts and application	Yudiantri Asdi, M.Sc s (Real Analysis, Advanced L	Dr. Ferra Ya	nuar and Statistics) in solving								
Intended Learning Outcomes (ILO) and Performance Indicator	1. Dr. D 2. Dr. M ILO-Stuc ILO-2	odi Devianto, M laiyastri, M.Sc ly Program Mastering mat complex mathe	I.Sc hematical concepts and application ematical probl5ems.	Yudiantri Asdi, M.Sc s (Real Analysis, Advanced L	Dr. Ferra Ya	nuar and Statistics) in solving								
Intended Learning Outcomes (ILO) and Performance Indicator (PI)	1. Dr. D 2. Dr. M ILO-Stuc ILO-2	odi Devianto, M laiyastri, M.Sc ly Program Mastering mat complex mathe PI-1. Able to ex	I.Sc hematical concepts and application ematical probl5ems. eplain basic mathematical concepts	Yudiantri Asdi, M.Sc	Dr. Ferra Ya	nuar and Statistics) in solving								
Intended Learning Outcomes (ILO) and Performance Indicator (PI)	1. Dr. D 2. Dr. M ILO-Stuc ILO-2	odi Devianto, M laiyastri, M.Sc ly Program Mastering math complex mathe PI-1. Able to pu PI-2. Able to pu	I.Sc hematical concepts and application ematical probl5ems. splain basic mathematical concepts rovide examples that are relevant to	Yudiantri Asdi, M.Sc s (Real Analysis, Advanced L) basic mathematical concepts	Dr. Ferra Ya	nuar and Statistics) in solving								

	ILO-3	Master one or several theories comprehensively for development in the fields of analysis, algebra, applied								
		mathematics, statistics and combinatoric mathematics.								
		PI-1. Able to identify theories used in related mathematical problems.								
		PI-2. Able to apply theory for development in related fields (advanced theory)								
		PI-3. Able to use advanced theory in solving related mathematical problems.								
	ILO-4	Mastering scientific techniques and developing them in solving research problems through a multidisciplinary or								
		interdisciplinary approach.								
		PI-1. Able to use scientific techniques in solving research problems								
		PI-2. Able to analyze research problems								
		PI-3. Able to formulate theorems/models and prove their correctness								
		PI-4. Able to use several mathematical software to solve complex mathematical problems.								
	ILO-5	Able to work and conduct research in the field of mathematics and related fields of science in accordance with								
		developments in current issues independently or collaboratively and communicate it academically.								
		PI-1. Able to prove mathematical statements formally and correctly.								
		PI-2. Able to use related techniques to conduct research								
		PI-3. Able to communicate research results academically.								
	Course L	Learning Outcome (CLO)								
F	CLO-1	Students are able to explain the concept of time series analysis in statistical studies. (ILO-2: PI-1, PI-2, PI-3)								
	CLO-2	Students are able to use advanced time series models with several classical model approaches. (ILO-3: PI-1, PI-2, PI-3)								
	CLO-3	Students are able to build a hybrid model of time series data with a fuzzy approach and artificial intelligence. (ILO-3: PI-1, PI-2, PI-3)								

	CLO-4 Students are able to use software using SPSS, Minitab, Eviews, R and Python applications in the process of estimating model parameters. (ILO-4: PI-1, PI-2, PI-3, PI-4)
	CLO-5 Students are able to reason intuitively and analytically and are able to express the results of their reasoning in writing, systematically and rigorously. (ILO-5: PI-1, PI-2, PI-3)
Brief Description	This course applies Case Based Method (CBM). CBM is a learning method that uses cases as a medium for learning development. Students explore, assess, interpret, synthesize, and information based on cases to produce an analysis and develop a solution plan. Case-Solving Based Learning in this course provides knowledge about the concepts of time series mathematical models which include the basic concepts of time series and autoregressive models, deterministic and stochastic time series models, classical and hybrid models.
Course Materials	 Basic concepts of time series and autoregressive models. Deterministic and stochastic time series models. Preferred time series models in the form of volatility, seasonal, long memory and mixed models. Hybrid fuzzy time series and artificial neural networks.
References	 Main: R. S. Tsay. (2013). <i>Multivariate Time Series Analysis: With R and Financial Applications</i>. Wiley, New York. ISBN 978-1118617908. S. G. Makridakis, S. C. Wheelwright, and R. J. Hyndman. (2008). <i>Forecasting: Methods and Application</i> (3rd Edition). John Wiley & Sons, New York. ISBN 978-0471532330. P. J. Brockwell and R. A. Davis. (2009). <i>Time Series: Theory and Methods</i> (2nd Edition). Springer, New York. ISBN 978-1441903198.
	Additional:
	1. C. Chatfield. (2003). The Analysis of Time Series: An Introduction (3rd Edition). Chapman and Hall, London. ISBN 978-

	 0203491683. G. Kitagawa. (2010). Introduction to Time Series Modeling. Chapman & Hall/CRC, Boca Raton. ISBN 978-1584889212. W. S. Wei. (2006). Time Series Analysis: Univariate and Multivariate Method (2nd Edition). Pearson Addison-Wesley, N ISBN 978-0321322166. G. E. P. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung. (2015). Time Series Analysis. Forecasting and Control. Wi York. ISBN 978-1118675021. J. D. Cryer and K. Chan. (2010). Time Series Analysis with Application in R. Springer, USA. ISBN 978-0387759586 A. Gharehbaghi. (2023). Deep Learning in Time Series Analysis. CRC Press, New York. ISBN 978-0367321789. B. Auffarth. (2021). Machine Learning for Time-Series with Python: Forecast, predict, and detect anomalies with state machine learning methods. Packt Publishing, New York. ISBN 978-1801819626. S. Sharma and V. Kumar. (2019). Neural Network and Fuzzy Time Series: Forecasting using neural network and fuzzy 1 LAMBERT Academic Publishing, London. ISBN 978-6200284990. 							
Instructional Media	Software:	Hardware:						
	LMS Unand (<u>http://sci.ilearn.unand.ac.id/</u>)	• Computer/Laptop						
	Zoom meeting	• Smartphones						
	• Whatsapp							
Team Teaching	1. Dr. Dodi Devianto, M.Sc							
	2. Dr. Maiyastri, M.Sc							
Assessment	Assignment, Participation, Mid-Term exam, Final exam							
Required courses	MAT81131 Probability Theory							
Academic Norms	Follow the Academic Regulations of Undergraduate Program	n, Universitas Andalas						

(https://akademik.unand.ac.id/images/2022-03-
30%20Peraturan%20Rektor%20Nomor%207%20Tahun%202022%20Penyelenggaraan%20Pendidikan-khusus%20Bab%20II.pdf)

Week (1)	Course Outcome (2)	Indicators (3)	Form of Assessment		Learning Materials	Weight (11)				
			(4)	Synch	ronous	Asyn	chronous		[Reference]	
				Face to Face Offline (5)	Face to Face Online (6)	Individual (7)	Collaboration (8)	Media (9)	(10)	
1-2	CLO 1: Students are	• Discipline	Midterm	Class:		Students		LMS	 Introduction 	15%
	able to explain the	in	exam (10%)	-introducti		find the		(ilearn	to Lectures	
	concept of time series	implementi		on of		references		UNAND)	(Assessment,	
	analysis in statistical	ng the	Independen	semester		and learn			Semester	
	studies (ILO-2 : PI-1,	college	t assignment	learning		material on			Study Plan,	
	PI-2, PI-3).	contract	(5%)	plan		basic			Syllabus,	
		• Accuracy in		-discussion		concepts in			Tuition	
		understandi		about		statistics			Contract)	
		ng related		course		and time			• Basic	
		material		material		series			concepts of	
						analysis in			time series	
				[2 x 3 x 50		the form of			and	
				minutes]		autoregress			autoregressiv	
						ive models,			e models.	

						as well as time series models are determinist ic and stochastic. [2 x 3 x 120			• The concept of deterministic and stochastic time series models.	
3-7	CLO 2: Students are able to use advanced time series models with several classical model approaches (ILO-3: PI-1, PI-2, PI- 3).	 Accuracy in understandi ng related material Accuracy in answering assignment questions Neatness of assignment execution Originality of assignment results 	Midterm exam (10%) Assignment (10%)	Class: - explanation of concepts - discussion about course materials [5 x 3 x 50 minutes]		minutes] Students find out the references and study materials [5 x 3 x 60 minutes]	Students's discussion in groups [5x3x60] minutes	LMS (ilearn UNAND)	• Basic concepts of advanced classical time series models with volatility, seasonal and long memory models and exogenous variables.	20%
8			I	I	Mid-term exan	n		I	1	

9-11	CLO 3: Students are able to build a hybrid model of time series data with a fuzzy approach and artificial intelligence (ILO-3: PI- 1, PI-2, PI-3).	 Accuracy in understandin g of related material Accuracy in answering assignment questions Neatness in completing assignments Originality of assignment results 	Final exam (5%) Participatio n (5%) Assignment (10%)	Class: - Explanation the concepts, - discussion about course materials [3 x 3 x 50 minutes]	Students find out references and study material [3x 3 x 60 minutes]	Students discuss in groups [3x3x60]	• LMS	• Basic concept of hybrid model of time series data a fuzzy approach and artificial intelligence.	20%
12-13	CLO 4: Students are able to use software using SPSS, Minitab, Eviews, R and Python applications in the process of estimating model parameters (ILO-4: PI-1, PI-2, PI-3, PI-4).	 Accuracy in understandin g of related material Accuracy in answering assignment questions Neatness in completing assignments Originality of assignment results 	Final exam (5%) Assignment (10%)	Class: - Use of SPSS, Minitab, EViews, R and Python applications. - Discussion about course materials. [2 x 3 x 50 minutes]	Students find out references and study material [2x 3 x 60 minutes]	Students discuss in groups [2x3x60]	• LMS	 Data analysis using SPSS, Minitab, and EViews apps R or Python codes for estimating model (select estimated method that have been learned). 	15%

14-15	CLO 5: Students are able to reason intuitively and analytically and are able to express the results of their	 Accuracy in understandin g of related material Accuracy in answering 	Assignment (15%) Final exam (10%) Participatio	Practice: – Discussion about course materials. – Presentatio		Students find out references and study material	Students discuss in groups [2x3x60 minutes]	• LMS	• Time series hybrid method with fuzzy and artificial neural	30%
	reasoning in writing, systematically and rigorously (ILO-5: PI-	assignment questions • Neatness in	n (5%)	n group		[2x 3 x 60 minutes]			• Bayesian hybrid	
	1, PI-2, PI-3).	completing assignments • Originality		minutes]					implementati on with data cases using	
		results							Minitab, EViews, R and Python	
16					Final exam					

II. Indicators, Criteria and Proportions of Assessment

NO	FORM OF ASSESSMENT	PROPORTION
		(%)
1	Assignment	50%
2	Participation	10%
3	Midterm exam	20 %
4	Final exam	20%
	TOTAL	100

Assessment proportion for each Course Learning Outcome (CLO):

- CLO 1: 15 %
- CLO 2: 20%
- CLO 3: 20 %
- CLO 4: 15 %
- CLO 5: 30 %

III. Assessment Plan Table

Form of assessment	Final	Mid-term	Assignments	Participation	Total of
Course Learning Outcomes (CLO)	exam	exam	Assignments	rancipation	Proportion
1. Students are able to explain the concept of time series analysis in statistical studies (ILO-2: PI-1, PI-2, PI-3).		10%	5%		15%
2. Students are able to use advanced time series models with several classical model approaches (ILO-3: PI-1, PI-2, PI-3).		10%	10%		20%
3. Students are able to build a hybrid model of time series data with a fuzzy approach and artificial intelligence (ILO-3: PI-1, PI-2, PI-3).	5%		10%	5%	20%
4. Students are able to use software using SPSS, Minitab, EViews, R and Python applications in the process of estimating model parameters (ILO-4: PI-1, PI-2, PI-3, PI-4).	5%		10%		15%
5. Students are able to reason intuitively and analytically and are able to express the results of their reasoning in writing, systematically and rigorously (ILO-5: PI-1, PI-2, PI-3).	10%		15%	5%	30%
Total of Proportion	20%	20%	50%	10%	100%

Matrix of CLO and ILO

									IL	0								
CLO	1			2		3				4			5			6		
CLU	PI		PI		PI			PI			PI			PI				
	1	2	1	2	3	1	2	3	1	2	3	4	1	2	3	1	2	3
1			\checkmark	~	~													
2						~	~	~										
3						~	~	~										
4									~	~	\checkmark	~						
5													~	\checkmark	~			
6																		