

Module Description/Course Syllabi

Study Programme: Bachelor of Mathematics Faculty of Mathematics and Natural Sciences Universitas Andalas

1. Course number and name

MAT61245 Optimal Control

2. Credits and contact hours/Number of ECTS credits allocated

3 sks / 4,53 ECTS

3. Instructors and course coordinator

1. Prof. Dr. Muhafzan; 2. Budi Rudianto, M.Si

4. Text book, title, author, and year

- 1. Naidu, D. S., Optimal Control Systems, CRC Press, 2003.
- Lewis, F. L., Vrabie, D. L. dan Syrmos, V. L., Optimal Control, 3rd ed. John Wiley & Sons, Inc., New Jersey, 2012

5. Recommended reading and other learning resources/tools

S. Anita, V. Arnautu, V. Capasso, An Introduction Optimal Control Problems in Life Sciences and Economics, Birkhauser, London, 2011.

6. Specific course information

A. Brief description of the content of the course (catalog description)

The core of this lecture is to discussion is about the solution of continuous optimal control problems with various forms of boundary conditions, as well as formulating some real problems into continuous optimal control problems. In addition, the linear quadratic optimal control problem is also discussed. Finally, we discuss the Pontryagin principle with respect to problems with control or finite states.

B. Prerequisites or co-requisites

- 1. MAT61142 Ordinary Differential Equation
- 2. MAT61122 Calculus III

C. Indicate whether a required or elective course in the program

Elective

D. Level of course unit (according to EQF: first cycle Bachelor, second cycle Master)

First Cycle Bachelor

E. Year of study when the course unit is delivered (if applicable)

4th year

F. Semester when the course unit is delivered

Odd Semester

G. Mode of delivery (face-to-face, distance learning)

Face to face

7. Intended Learning Outcomes

ILO-1: Possesses a good ethics and integrity
PI-2: Able to act in accordance with academic ethics
PI-3: Able to act in accordance with academic integrity
ILO-2: Possesses profound knowledge of the basic concept mathematics
PI-1: An ability to explain the basic concept mathematics
PI-3: An ability to determine solution of the simple problems

using the basic concept mathematics
ILO-3: An ability to identify, explain and generalise simple mathematical
PI-1: An ability to identify simple mathematical problems
PI-2: An ability to explain simple mathematical problems
PI-3: An ability to generalise simple mathematical problems
ILO-4: An ability to use concept and fundamental technique of mathematics in
solving simple mathematical problems
PI-1: An ability to illustrate simple mathematical problems based on
appropriate basic mathematical concepts and techniques
PI-3: An ability to solve simple mathematical problems using the
proper concept and mathematical fundamental techniques
ILO-5: An ability formally and correctly proves a simple mathematical statements
using facts and methods that have been studied
PI-1: An ability to identify the formal structures and analogy forms in
mathematics
PI-2: An ability to use fact and apply methods in proving simple
mathematical statement
PI-3: An ability to present simple mathematical statement proof rigorously
(sequentially and conscientious)
PI-4: An ability to conclude or interpret result of the proving
simple mathematical statement
ILO-7: An ability to communicate effectively especially in the area of
mathematics in with diverse communities
PI-1: Able to convey ideas or study results orally, especially in the field of
mathematics
PI-2: Able to present ideas or study results in writing, especially in the field
of mathematics
PI-3: Able to respond to feedback given
ILO-8: An ability to work in team
PI-1: Able to actively participate in a team with full responsibility
PI-2: Able to respond well to any feedback within the team
PI-3: Able to complete tasks according to the set schedule
PI-4: Able to adapt in a team
8. Course Learning Outcomes

- 1. Students are able to identify optimal control problems and understand the basic concepts, definitions, and classification of optimal control problems.
- 2. Students are able to identify the existence of optimal control problem solutions and skillfully solve optimal control problems with appropriate methods.
- 3. Students understand the physical aspects and are able to interpret the solution of optimal control problems

- 4. Students are able to formulate some real problems into optimal control problems.
- 5. Students are able to use Matlab application in obtaining optimal control problem solutions

9. Brief list of topics to be covered

Optimal control problems in some real phenomena, variational calculus, the ptimal control problems with various forms of boundary conditions, existence of the solution for the optimal control problem, the linear quadratic optimal control problem, use of Matlab software to solve the optimal control problem

10. Learning and teaching methods

Directed Learning, Project-Based Learning

11. Language of instruction

Indonesia and English

12. Assessment methods and criteria

Summative Assessment :

- 1. Mid-term exam: 20%
- 2. Final exam: 20%
- 3. Assignment (home work): 10%
- 4. Project : 50%