SEMESTER STUDY PLAN (SSP) APPLIED ABSTRACT ALGEBRA (ELECTIVE COURSES)



## DEPARTMENT OF MATHEMATICS AND DATA SCIENCE FACULTY OF MATHEMATICS AND NATURAL SCIENCES UNIVERSITAS ANDALAS 2024



### SEMESTER STUDY PLAN (SSP) BACHELOR PROGRAM OF MATHEMATICS FACULTY OF MATHEMATICS AND NATURAL SCIENCES UNIVERSITAS ANDALAS

| Course Name                             |              | Course Code                                                                         | URL I-Learn        |                 | Credits           | Semester      | Compilation Date |
|-----------------------------------------|--------------|-------------------------------------------------------------------------------------|--------------------|-----------------|-------------------|---------------|------------------|
| APPLIED ABSTRACT                        | Г ALGEBRA    | MAT61213                                                                            | https://sci.ilea   | rn.unand.ac.id  | 3                 | 5             | 14 May 2024      |
| Person in Charge                        |              | Study Plan Creator Head of Res                                                      |                    |                 | search Group      | Head of       | Study Program    |
|                                         |              | Prof. Dr. I Made                                                                    | e Arnawa, M.Si.    | Nova Noliz      | a Bakar, M.Si     | Dr. No        | overina Alfiany  |
| Intended Learning<br>Outcomes (ILO) and | Intended Lea | rning Outcome                                                                       | s                  |                 |                   |               |                  |
| Performance                             | ILO-1        | Possesses a good ethics and integrity                                               |                    |                 |                   |               |                  |
| Indicator (PI)                          |              | PI-1: An ability                                                                    | to explain acad    | emic ethics and | l integrity       |               |                  |
|                                         |              | PI-2: An ability                                                                    | to act in accord   | ance with acad  | emic ethics       |               |                  |
|                                         |              | PI-3: An ability to act in accordance with academic integrity                       |                    |                 |                   |               |                  |
|                                         | ILO-2        | Possesses                                                                           | profound know      | ledge of the ba | sic concept math  | nematics      |                  |
|                                         |              | PI-1: An a                                                                          | bility to explain  | basic mathema   | atical concepts   |               |                  |
|                                         |              | PI-2: An a                                                                          | ability to provide | e examples that | are relevant to b | oasic mathema | tical concepts   |
|                                         |              | PI-3: An ability to determine solutions to simple problems using basic mathematical |                    |                 |                   |               | nathematical     |
|                                         |              | concepts                                                                            |                    |                 |                   |               |                  |
|                                         | ILO-3        | An ability                                                                          | v to identify, exp | lain and genera | alize simple mat  | hematical     |                  |

|       | PI-1: An ability to identify simple mathematical problems                                     |
|-------|-----------------------------------------------------------------------------------------------|
|       | PI-2: An ability to explain simple mathematical problems                                      |
|       | PI-3: An ability to generalize simple mathematical problems                                   |
| ILO-4 | An ability to use basic mathematical concepts and techniques in solving simple mathematical   |
|       | problems.                                                                                     |
|       | PI -1: An ability to choose the right basic mathematical concepts and techniques in solving   |
|       | simple mathematical problems.                                                                 |
|       | PI -2: An ability to illustrate simple mathematical problems based on basic concepts and      |
|       | techniques of appropriate mathematics.                                                        |
|       | PI -3: An ability to solve simple mathematical problems using appropriate basic mathematical  |
|       | concepts and techniques.                                                                      |
| ILO-5 | An ability to formally and correctly proves a simple mathematical statements using facts and  |
|       | methods that have been studied.                                                               |
|       | PI-1: An ability to identify formal structures and analogous forms in mathematics             |
|       | PI-2: An ability to use facts and apply methods to prove simple mathematical statements       |
|       | PI-3: An ability to present simple mathematical statement proof rigorously (sequentially and  |
|       | conscientious)                                                                                |
|       | PI-4: An ability to conclude or interpret result of the proving simple mathematical statement |
| ILO-6 | Have ability data literacy and technology and can apply them in solving simple mathematical   |
|       | problems or other relevant fields                                                             |
|       | PI-1: An ability to identify the right data and technology to solve simple mathematical       |
|       | problems or other fields                                                                      |
|       | PI-2: An ability to use data and technology and apply them to solve simple mathematical       |
|       | statements or other areas                                                                     |

| PI-3: An ability to process data using available technology in simple mathematical                    |
|-------------------------------------------------------------------------------------------------------|
| problems or other fields                                                                              |
| PI-4: An ability to conclude and interpret data processing results for simple mathematical            |
| problems or other fields                                                                              |
| PI-5: An ability to design an algorithm to solve simple mathematical problems or other                |
| fields                                                                                                |
| An ability to communicate effectively especially in the area of mathematics in with diverse           |
| communities                                                                                           |
| PI-1: An ability to convey ideas or study results orally, especially in the field of mathematics      |
| PI-2: An ability to present ideas or study results in writing, especially in the field of mathematics |
| PI-3: An ability to respond to feedback given                                                         |
| Able to work in a team.                                                                               |
| PI-1: An ability to actively participate in a team with full responsibility                           |
| PI-2: An ability to respond well to any feedback within the team                                      |
| PI-3: An ability to complete tasks according to the set schedule                                      |
| PI-4: An ability to adapt in a team                                                                   |
| An ability to apply knowledge of mathematics in career and involve in life long learning              |
| PI-1: An ability to carry out learning independently to deepen and expand the knowledge that          |
| has been obtained                                                                                     |
| PI-2: An ability to carry out literature studies                                                      |
| PI-3: An ability to prepare and realize final project plans                                           |
| PI-4: An ability to use mathematical concepts in identifying business opportunities                   |
| ning Outcomes (CLO)                                                                                   |
| Students are able to explain concepts in number theory along with related properties (ILO-3)          |
|                                                                                                       |

| 1                 | $CIO_2$                                                                                         | Students can understand the concept of cryptology, how to change ordinary manuscripts into                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|-------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|                   | CLO-2                                                                                           | source arrives and how to charge source menuscripts into andinamy menuscripts into                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
|                   |                                                                                                 | secret scripts, and now to change secret manuscripts into ordinary manuscripts with various                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
|                   |                                                                                                 | classical cryptographic methods (ILO-3, ILO-4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
|                   | CLO-3                                                                                           | Students can find the forms of linear congruence needed to inscribe and or decrypt manuscripts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
|                   |                                                                                                 | (ILO-4, ILO-5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
|                   | CLO-4                                                                                           | Students can understand the concept of lattice and related properties (ILO-4, ILO-5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
|                   | CLO-5                                                                                           | Students able to understand the concepts of Boolean Algebra and related properties (ILO-4,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|                   |                                                                                                 | ILO-5, ILO-6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
|                   | CLO-6                                                                                           | Students can explain the application of Boolean Algebra to logic circuits (ILO-4, ILO-5, ILO-6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| Brief Description | The Applied<br>abstract Alge<br>history of cry<br>and its prop-<br>equipped wi<br>Euclid algori | Abstract Algebra course aims to introduce the basics of applying the concepts and properties of ebra, in this case, to cryptography and to simplify a series of logical gates. In Cryptography, the ptography and classical cryptography will be discussed. In contrast, the concept of Boolean Algebra erties will be discussed in simplifying the series of logic gates. In this lecture, students will be the mathematical concepts needed in cryptography: basic number theory, ring integer modulo n, thm, inverse multiplication in ring modulo n, and introduction to the finite field. |  |  |  |  |  |  |
| Course Materials  | 1.Basics2ring ir3Group4Histor5Monog6Polygr7Lattice8Boolea9Logic                                 | of number theory<br>ateger modulo n and inverse multiplication in ring modulo n<br>Matrix on ring $\Box_n$<br>y of cryptography<br>graphic encoding<br>raphic coding<br>e<br>in algebra<br>gates                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |

| References       | Main:         [1] Judson, T. W. 2020. Abstract Algebra         [2] Kromodimoeljo, S. 2009. Teori dan Ag         Aditional:         [3] Lidl, R. & Pilz, G. 2009. Applied Abstract | dson, T. W. 2020. <i>Abstract Algebra Theory and Applications</i> . Texas: PWS Publishing<br>omodimoeljo, S. 2009. <i>Teori dan Aplikasi Kriptografi</i> . Jakarta: SPK IT Consulting<br><b>I:</b><br>II, R. & Pilz, G. 2009. Applied Abstract Algebra. New York: Springer-Verlag Inc. |  |  |  |  |  |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Learning Media   | Hardware:                                                                                                                                                                         |                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|                  | <ul> <li>LMS Unand<br/>(<u>https://sci.ilearn.unand.ac.id/</u>)</li> <li>Zoom Meeting / Microsoft Teams</li> <li>WhatsApp</li> </ul>                                              | <ul> <li>Computer / Laptop</li> <li>Smartphone</li> <li>LCD Projector</li> </ul>                                                                                                                                                                                                       |  |  |  |  |  |
| Team Teaching    | ◆ Prof. Dr. I Made Arnawa, M.Si.                                                                                                                                                  |                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Required courses | Algebraic Structures (MAT62112)                                                                                                                                                   |                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Academic Norms   | <u>nttps://akademik.unand.ac.id/images/2022-03-</u><br>30%20Peraturan%20Rektor%20Nomor%207%20Tahun%202022%20Penyelenggaraan%20Pendidikan-<br>khusus%20Bab%20II.pdf                |                                                                                                                                                                                                                                                                                        |  |  |  |  |  |

#### Weekly Study Plan

| Week/<br>Meet | Course<br>Learning | Indicator (3) | Assessment | Activi       | Subject,<br>references (10) | Weight |
|---------------|--------------------|---------------|------------|--------------|-----------------------------|--------|
| (1)           | Outcomes (2)       |               | (±)        | Synchronous* |                             |        |

|     |       |                                                                                                                           |                                                                    | Face to face<br>Offline<br>(5)                                                                                                                            | Face to face<br>Online<br>(6) | Individual<br>(7) | Collaboratio<br>n (8) | Media<br>(9)                                                                             |                                                                                                                                                   |     |
|-----|-------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------|-----------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1/1 | CLO-1 | Accuracy, depth,<br>and<br>completeness in<br>understanding<br>and applying<br>mathematical<br>concepts and<br>properties | Activeness<br>in lectures;<br>Homework,<br>Quiz, Mid-<br>term Exam | <ol> <li>Explanation<br/>of Lecture<br/>Material</li> <li>Discussion<br/>and Q&amp;A of<br/>Lecture<br/>Material</li> <li>x 3 x 50<br/>minutes</li> </ol> |                               |                   |                       | <ol> <li>Learning<br/>Slides /<br/>Videos</li> <li>LMS<br/>(iLearn<br/>Unand)</li> </ol> | Assessment<br>Rules, RPS,<br>Syllabus; Tuition<br>Contract;<br>Course overview;<br>Largest common<br>factor, division<br>algorithm<br>[1],[2],[3] | 25% |
| 2/2 | CLO-1 | Accuracy, depth,<br>and<br>completeness in<br>understanding<br>and applying<br>mathematical<br>concepts and<br>properties | Activeness<br>in lectures;<br>Homework,<br>Quiz, Mid-<br>term Exam | <ol> <li>Explanation<br/>of Lecture<br/>Material</li> <li>Discussion<br/>and Q&amp;A of<br/>Lecture<br/>Material</li> <li>x 3 x 50<br/>minutes</li> </ol> |                               |                   |                       | <ol> <li>Learning<br/>Slides /<br/>Videos</li> <li>LMS<br/>(iLearn<br/>Unand)</li> </ol> | addition and<br>multiplication<br>modulo 26<br>[1],[2],[3]                                                                                        |     |
| 3/3 | CLO-1 | Accuracy, depth,<br>and<br>completeness in<br>understanding<br>and applying<br>mathematical<br>concepts and<br>properties | Activeness<br>in lectures;<br>Homework,<br>Quiz, Mid-<br>term Exam | <ol> <li>Explanation<br/>of Lecture<br/>Material</li> <li>Discussion<br/>and Q&amp;A of<br/>Lecture<br/>Material</li> <li>x 3 x 50<br/>minutes</li> </ol> |                               |                   |                       | <ol> <li>Learning<br/>Slides /<br/>Videos</li> <li>LMS<br/>(iLearn<br/>Unand)</li> </ol> | Linear<br>congruence and<br>linear congruence<br>systems<br>[1],[2],[3]                                                                           |     |

| 4 / 4 | CLO-1  | Accuracy, depth,<br>and<br>completeness in<br>understanding<br>and applying<br>mathematical<br>concepts and<br>properties                                | Activeness<br>in lectures;<br>Homework,<br>Quiz, Mid-<br>term Exam | <ol> <li>Explanation<br/>of Lecture<br/>Material</li> <li>Discussion<br/>and Q&amp;A of<br/>Lecture<br/>Material</li> <li>x 3 x 50<br/>menit</li> </ol>   | 1.Structured<br>Assignment<br>[1 x 3 x 120<br>minutes] |                                                           | <ol> <li>Learning<br/>Slides /<br/>Videos</li> <li>LMS<br/>(iLearn<br/>Unand)</li> </ol> | Addition,<br>multiplication,<br>determinants of<br>m x m matrices<br>whose entries are<br>elements in $\Box_n$<br>(GL(m,n $\Box$ ))<br>[1],[2],[3] |     |
|-------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 5 / 5 | CLO-2  | <ul> <li>Accuracy,<br/>depth, and<br/>completeness<br/>in<br/>understanding<br/>and applying<br/>mathematical<br/>concepts and<br/>properties</li> </ul> | Activeness<br>in lectures;<br>Homework,<br>Quiz, Mid-<br>term Exam | <ol> <li>Explanation<br/>of Lecture<br/>Material</li> <li>Discussion<br/>and Q&amp;A of<br/>Lecture<br/>Material</li> <li>x 3 x 50<br/>minutes</li> </ol> | 1.Self-Paced<br>Learning<br>[1 x 3 x 120<br>minutes]   |                                                           | <ol> <li>Learning<br/>Slides /<br/>Videos</li> <li>LMS<br/>(iLearn<br/>Unand)</li> </ol> | History of<br>cryptography<br>[1],[2],[3]                                                                                                          | 15% |
| 6 / 6 | CLO-2  | <ul> <li>Accuracy,<br/>depth, and<br/>completeness<br/>in<br/>understanding<br/>and applying<br/>mathematical<br/>concepts and<br/>properties</li> </ul> | Activeness<br>in lectures;<br>Homework,<br>Quiz, Mid-<br>term Exam | <ol> <li>Explanation<br/>of Lecture<br/>Material</li> <li>Discussion<br/>and Q&amp;A of<br/>Lecture<br/>Material</li> <li>x 3 x 50<br/>minutes</li> </ol> | 1.Structured<br>Assignment<br>[1 x 3 x 120<br>minutes] |                                                           | <ol> <li>Learning<br/>Slides /<br/>Videos</li> <li>LMS<br/>(iLearn<br/>Unand)</li> </ol> | Crypto<br>monograph<br>[1],[2],[3]                                                                                                                 |     |
| 7 / 7 | CLO- 3 | <ul> <li>Accuracy,<br/>depth, and<br/>completeness<br/>in<br/>understanding</li> </ul>                                                                   | Activeness<br>in lectures;<br>Homework,<br>Quiz, Mid-<br>term Exam | <ol> <li>Explanation<br/>of Lecture<br/>Material</li> <li>Discussion<br/>and Q&amp;A of</li> </ol>                                                        |                                                        | 1. Collaborati<br>ve Learning<br>[1 x 3 x 120<br>minutes] | 1. Learning<br>Slides /<br>Videos                                                        | Polygraphic<br>Cryptography<br>[1],[2],[3]                                                                                                         | 15% |

|         |       | and applying<br>mathematical<br>concepts and<br>properties                                                                                               |                                                                   | Lecture<br>Material<br>[1 x 3 x 50<br>minutes]                                                                                                            |               |                                                      | ◆ LMS<br>(iLearn<br>Unand)                                                               |                                                  |     |
|---------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------|-----|
| 8       |       |                                                                                                                                                          |                                                                   | Γ                                                                                                                                                         | Mid-Term Exan | ı                                                    |                                                                                          |                                                  | 30% |
| 9 / 8   | CLO-4 | <ul> <li>Accuracy,<br/>depth, and<br/>completeness<br/>in<br/>understanding<br/>and applying<br/>mathematical<br/>concepts and<br/>properties</li> </ul> | Activeness<br>in lectures,<br>Homework,<br>Quizzes,<br>Final Exam | <ol> <li>Explanation<br/>of Lecture<br/>Material</li> <li>Discussion<br/>and Q&amp;A of<br/>Lecture<br/>Material</li> <li>x 3 x 50<br/>minutes</li> </ol> |               |                                                      | <ol> <li>Learning<br/>Slides /<br/>Videos</li> <li>LMS<br/>(iLearn<br/>Unand)</li> </ol> | Partially ordered<br>set (poset)<br>[1],[2],[3]  | 15% |
| 10 / 9  | CLO-4 | <ul> <li>Accuracy,<br/>depth, and<br/>completeness<br/>in<br/>understanding<br/>and applying<br/>mathematical<br/>concepts and<br/>properties</li> </ul> | Activeness<br>in lectures,<br>Homework,<br>Quizzes,<br>Final Exam | <ol> <li>Explanation<br/>of Lecture<br/>Material</li> <li>Discussion<br/>and Q&amp;A of<br/>Lecture<br/>Material</li> <li>x 3 x 50<br/>minutes</li> </ol> |               |                                                      | <ol> <li>Learning<br/>Slides /<br/>Videos</li> <li>LMS<br/>(iLearn<br/>Unand)</li> </ol> | Define of Laticce<br>[1],[2],[3]                 |     |
| 11 / 10 | CLO-4 | <ul> <li>Accuracy,<br/>depth, and<br/>completeness<br/>in<br/>understanding<br/>and applying<br/>mathematical<br/>concepts and<br/>properties</li> </ul> | Activeness<br>in lectures;<br>Homework,<br>Quiz, Final<br>Exam    | <ol> <li>Explanation<br/>of Lecture<br/>Material</li> <li>Discussion<br/>and Q&amp;A of<br/>Lecture<br/>Material</li> <li>x 3 x 50<br/>minutes</li> </ol> |               | 1.Self-Paced<br>Learning<br>[1 x 3 x 120<br>minutes] | <ol> <li>Learning<br/>Slides /<br/>Videos</li> <li>LMS<br/>(iLearn<br/>Unand)</li> </ol> | Hasse and Sub<br>laticce diagrams<br>[1],[2],[3] |     |

| 12 / 11 | CLO-5 | <ul> <li>Accuracy,<br/>depth, and<br/>completeness<br/>in<br/>understanding<br/>and applying<br/>mathematical<br/>concepts and<br/>properties</li> </ul> | Keaktifan<br>Activeness<br>in lectures;<br>Homework,<br>Quiz, Final<br>Exam | <ol> <li>Explanation<br/>of Lecture<br/>Material</li> <li>Discussion<br/>and Q&amp;A of<br/>Lecture<br/>Material</li> <li>x 3 x 50<br/>minutes</li> </ol> | 1.Structured<br>Assignment<br>[1 x 3 x 120<br>minutes] |                                                           | <ol> <li>Learning<br/>Slides /<br/>Videos</li> <li>LMS<br/>(iLearn<br/>Unand)</li> </ol> | Properties of two<br>values<br>Laticce<br>[1],[2],[3]                                   | 15% |
|---------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----|
| 13 / 12 | CLO-5 | <ul> <li>Accuracy,<br/>depth, and<br/>completeness<br/>in<br/>understanding<br/>and applying<br/>mathematical<br/>concepts and<br/>properties</li> </ul> | Activeness<br>in lectures;<br>Homework,<br>Quiz, Final<br>Exam              | <ol> <li>Explanation<br/>of Lecture<br/>Material</li> <li>Discussion<br/>and Q&amp;A of<br/>Lecture<br/>Material</li> <li>x 3 x 50<br/>minutes</li> </ol> |                                                        | 1. Collaborati<br>ve Learning<br>[1 x 3 x 120<br>minutes] | <ol> <li>Learning<br/>Slides /<br/>Videos</li> <li>LMS<br/>(iLearn<br/>Unand)</li> </ol> | Properties of two<br>values<br>Laticce<br>[1],[2],[3]                                   |     |
| 14 / 13 | CLO-6 | <ul> <li>Accuracy,<br/>depth, and<br/>completeness<br/>in<br/>understanding<br/>and applying<br/>mathematical<br/>concepts and<br/>properties</li> </ul> | Activeness<br>in lectures;<br>Homework,<br>Quiz, Final<br>Exam              | <ol> <li>Explanation<br/>of Lecture<br/>Material</li> <li>Discussion<br/>and Q&amp;A of<br/>Lecture<br/>Material</li> <li>x 3 x 50<br/>minutes</li> </ol> |                                                        |                                                           | <ol> <li>Learning<br/>Slides /<br/>Videos</li> <li>LMS<br/>(iLearn<br/>Unand)</li> </ol> | Types of basic<br>gates of logic<br>[1],[2],[3]                                         | 15% |
| 15 / 14 | CLO-6 | <ul> <li>Accuracy,<br/>depth, and<br/>completeness<br/>in<br/>understanding</li> </ul>                                                                   | Activeness<br>in lectures,<br>Homework,<br>Quizzes,<br>Final Exam           | <ol> <li>Explanation<br/>of Lecture<br/>Material</li> <li>Discussion<br/>and Q&amp;A of</li> </ol>                                                        |                                                        |                                                           | 1. Learning<br>Slides /<br>Videos                                                        | Application of<br>the properties of<br>two-value Laticce<br>in the<br>simplification of |     |

|           | and applying<br>mathematical<br>concepts and<br>properties | Lecture<br>Material<br>[1 x 3 x 50<br>minutes] |   | ◆ LMS<br>(iLearn<br>Unand) | basic gate circuits<br>of logic |     |
|-----------|------------------------------------------------------------|------------------------------------------------|---|----------------------------|---------------------------------|-----|
| 16 - 18 - |                                                            | Final Exan                                     | L |                            |                                 | 30% |

#### 1. Indicators, Criteria, and Assessment Weights

# 1. Assessment Weights of Each Form of Assessment:

 1) Homework
 : 30%

 2) Quiz
 : 10%

 3) Mid-term Exam
 : 30%

 4) Final Exam
 : 30%

## 1. Assessment Weight of Each Course Learning Outcome (CLO):

| 1) | CLO-1 | : 20% |
|----|-------|-------|
| 2) | CLO-2 | : 15% |
| 3) | CLO-3 | : 15% |
| 4) | CLO-4 | : 20% |
| 5) | CLO-5 | : 15% |
| 6) | CLO-6 | : 15% |

# 1. Assessment Plan Table

| Forms of Assessment                                  | Homework |   |   | Quiz |   | Mid-<br>Term | Final | Total  |
|------------------------------------------------------|----------|---|---|------|---|--------------|-------|--------|
| CLO                                                  | 1        | 2 | 3 | 1    | 2 | Exam         | Exam  | Weight |
| CLO-1                                                |          |   |   |      |   |              |       |        |
| Students can explain concepts in number theory       | 5%       |   |   | 5%   |   | 10%          |       | 20%    |
| along with related properties (ILO-3)                |          |   |   |      |   |              |       |        |
| CLO-2                                                |          |   |   |      |   |              |       |        |
| Students can understand the concept of cryptology,   |          |   |   |      |   |              |       |        |
| how to change ordinary manuscripts into secret       | 5%       |   |   |      |   | 100/         |       | 1 - 0/ |
| scripts, and how to change secret manuscripts into   |          |   |   |      |   | 10%          |       | 15%    |
| ordinary manuscripts with various classical          |          |   |   |      |   |              |       |        |
| cryptographic methods (ILO-3, ILO-4)                 |          |   |   |      |   |              |       |        |
| CLO-3                                                |          |   |   |      |   |              |       |        |
| Students can find the forms of linear congruence     | 5%       |   |   |      |   | 10%          |       | 15%    |
| needed to inscribe and or decrypt manuscripts (ILO-  |          |   |   |      |   |              |       |        |
| 4, ILO-5)                                            |          |   |   |      |   |              |       |        |
| CLO-4                                                |          |   |   |      |   |              |       |        |
| Students can understand the concept of lattice and   | 5%       |   |   | 5%   |   |              | 10%   | 20%    |
| related properties (ILO-4, ILO-5)                    |          |   |   |      |   |              |       |        |
| CLO-5                                                |          |   |   |      |   |              |       |        |
| Students can understand the concepts of Boolean      | 5%       |   |   |      |   |              | 10%   | 15%    |
| Algebra and related properties (ILO-4, ILO-5, ILO-6) |          |   |   |      |   |              |       |        |

| CLO-6                                           |     |   |   |     |   |     |     |      |
|-------------------------------------------------|-----|---|---|-----|---|-----|-----|------|
| Students can explain the application of Boolean | 5%  |   |   |     |   |     | 10% | 15%  |
| Algebra to logic circuits (ILO-4, ILO-5, ILO-6) |     |   |   |     |   |     |     |      |
| Total Weight                                    | 30% | 0 | 0 | 10% | 0 | 30% | 30% | 100% |