SEMESTER STUDY PLAN ANALYTICAL GEOMETRY (COMPULSORY COURSE) Case-Based Method

DEPARTMENT OF MATHEMATICS AND DATA SCIENCE FACULTY OF MATHEMATICS AND NATURAL SCIENCES UNIVERSITAS ANDALAS

2024

SEMESTER STUDY PLAN (SSP) STUDY PROGRAM S 1 MATHEMATICS FACULTY OF MATHEMATICS AND NATURAL SCIENCES UNIVERSITAS ANDALAS

Course N	Jame		Course Code	I-Learn Co	urse URL	Credits	Semester	Compilation Date		
ANALYTICAL (GEOMET	RY	MAT62121	https://sci.ilea	rn.unand.ac.id	4	2	March 27, 2023		
			Study Plan	Creator	Head of Rese	earch Group	Head of the study program			
Person in O	Charge		Efendi <i>,</i> Budi Rudia		Dr. Hari	ipamyu	Dr. Ar	rival Rince Putri		
Intended Learning	Intende	ended Learning Outcomes								
Outcomes (ILO) and Performance Indicators (PI)	ILO-2 ILO-3 ILO-4	PI-1: An a PI-2: An a PI-3: An a An ability PI-1: An a PI-2: An a PI-3: An a An ability problems PI-1: An a mat	s profound knowled ability to explain the ability to give exam- ability to determine y to identify, explain ability to identify sin ability to explain sin ability to generalize y to use concepts an ability to choose app hematical problems ability to illustrate s cepts and technique	e basic concepts of ples related to the solutions of the solutions of the mand generalize mple mathematic simple mathematic d fundamental to propriate basic mathemat	of mathematics e basic concept simple problem simple mathem cal problems al problems atical problems echniques of m mathematical co	ts of mathema ns using the b natics probler athematics ir	pasic concep ms n solving sin echniques in	mple mathematical n solving simple		

	PI-3: An ability to solve simple mathematical problems using appropriate basic mathematical concepts and techniques
IL	 An ability to formally and correctly prove a simple mathematical statement using facts and methods that have been studied PI-1: An ability to identify the formal structures and analogous forms in mathematics PI-2: An ability to use facts and apply methods in proving simple mathematical statements PI-3: An ability to present simple mathematical statements proof rigorously (sequentially and consistently) PI-4: An ability to conclude or interpret the results of the proving simple mathematical statement
IL	 Mo-6 Have ability data literacy and technology and can apply them in solving simple mathematical problems or other relevant fields PI-1: An ability to identify the right data and technology to solve simple mathematical problems or other fields PI-2: An ability to use data and technology and apply them to solve simple mathematical statements or other areas PI-3: An ability to process data using available technology in simple mathematical problems or other fields PI-4: An ability to conclude and interpret data processing results for simple mathematical problems or other fields PI-5: An ability to design an algorithm to solve simple mathematical problems or other fields
IL	 An ability to communicate effectively especially in the area of mathematics in with diverse communities PI-1: An ability to convey ideas or study results orally, especially in the field of mathematics PI-2: An ability to present ideas or study results in writing, especially in the field of mathematics PI-3: An ability to respond to feedback given
С	ourse Learning Outcomes (CLO)

	 Students are able to advanced theoretical concepts, especially related to the definition and basic properties of conic sections, translation and rotation and determine the equations of conic sections in Cartesian coordinates and draw sketches. (CP-2: PI-1)
	2. Students are able to master the concept of curve parameterization and curvature of curves in a plane, equations in polar coordinates and calculus in polar coordinates. CP-2: PI-1)
	3. Students are able to generalize plane geometry problems into three-dimensional space geometry. CP-3: PI- 1, PI-2)
	4. Students are able to identify and explain problems related to plane equations, distance, area, volume. (CP 4: PI-2, PI-3)
	5. Students are able to solve geometric problems on planes and space using mathematical software (CP-6: PI- 1- PI-4)
	6. Students are able to communicate the results of their thoughts and work both orally and in writing. (CP-7: PI-2)
Brief description of	This course discusses analytical geometry of planes and space. Lectures start with an introduction to analytical
Course	geometry, conic section equations, translation, rotation, representation of parametric equations of curves on a
	plane. Towards the mid-semester evaluation, calculus topics in polar coordinates were discussed. After the mid-
	semester evaluation, we were introduced to Cartesian coordinates in three-dimensional space, vectors, dot
	products and cross products, vector-valued functions and curvilinear motion, lines and tangents in three-
	dimensional space, and surfaces in three-dimensional space. Towards the end of semester evaluation, an
	introduction to cylindrical and spherical coordinates is given. To complement students' skills and abilities in
	communicating mathematically and using mathematical software, towards the end of the semester they are
	given group collaboration assignments related to topics in analytical geometry.
Study Materials/Sub-	1. Analytical geometry of the Cartesian plane
Study Materials	2. Cone Slice
	3. Translation and rotation of axes
	4. Representation of parametric equations of curves on a plane

	 5. Polar coordinate system 6. Equation of curves in polar coordinates and their 7. Cartesian coordinates in three-dimensional space 8. Vectors, dot products and cross products 9. Vector valued functions and curvilinear motion 10. Lines and tangents in three-dimensional space 11. Surfaces in three-dimensional space 12. Cylindrical and spherical coordinates 	0 1
References	Main : 1. Dale Varberg, Edwin Purcell and Steve Rigdon, Additional:	x, 2016, <u>https://openstax.org/details/books/calculus-</u>
Learning Media	Software :	Device hard :
	 LMS Unand (https://sci.ilearn.unand.ac.id) Zoom meetings WhatsApp 	Computer/LaptopSmartphones
Team Teaching	1. Efendi, M.Si 2. Budi Rudianto, M.Si	
Required courses	Calculus 1	
Academic Norms	https://akademik.unand.ac.id/images/2022-03- 30%20Peraturan%20Rektor%20Nomor%207%20Tah khusus%20Bab%20II.pdf	un%202022%20Penyelenggaraan%20Pendidikan-

I. Weekly Lecture Plan

					Activiti []					
Week/ Meet	Course Outcomes	Indicators (3)	Assessmen t (4)	Synchronous *		Asynch	ronous **		Subject,	Weight
(1)	(2)			Face to face Offline (5)	Face to face Online (6)	Individual (7)	Collaborative (10)	Media (9)	references (10)	(11)
1/1	CLO 1 Students are able to master theoretical concepts, especially related to the definition and basic properties of conic sections, translation and rotation and determine the equations of conic sections in Cartesian coordinates and draw sketches.	college contracts • Accurate	MIDTERM EXAM (2%)	 SL Introduction to RPS Studying : concept explanation, discussion and question and answer course material [1 x 2x 50] minutes 		A.M Students look for references according to the RPS and study lecture material: Analytical geometry of planes and space $[2 \times 2 \times 60]$ minutes		LMS (ilearn UNAND)	 Introduction to College (Assessment Rules, RPS, Syllabus, Tuition Contract) A glance at the geometry of planes and space [1] 	3%

2/2	CLO 1 Students are able to master theoretical concepts, especially related to the definition and basic properties of conic sections, translation and rotation and determine the equations of conic sections in Cartesian coordinates and draw sketches.	Accurate understanding of related material	MIDTERM EXAM (2%)	• SL Studying : concept explanation discussion and question and answer course material [1 x 2 x 50 minutes]		A.M Students look for references and study material equations of circles and ellipses [2 x 2 x 60 minutes]	LMS (Ilearn UNAND)	Conic Slices: Equations of circles and ellipses [1]	3%
2/3	CLO 1 Students are able to master theoretical concepts, especially related to the definition and basic properties of conic sections, translation and rotation and determine the equations of conic sections in Cartesian	Accurate understanding of related material	MIDTERM EXAM (2%)		 elementary school Studying : concept explanation discussion and question and answer course material [1 x 2 x 50 minutes] 	parabolic equations	LMS (ilearn UNAND) Google Meet	Parabola equation [1]	3%

	coordinates and draw sketches.							
3/4	CLO 1 Students are able to master theoretical concepts, especially related to the definition and basic properties of conic sections, translation and rotation and determine the equations of conic sections in Cartesian coordinates and draw sketches.	Accurate understanding of related material	MIDTERM EXAM (3%)	• SL Studying : concept explanation discussion and question and answer course material [1 x 2 x 50 minutes]	A.M Students look for references and study material using TDK II and the substitution method to calculate definite integrals [2 x 2 x 60 minutes]	LMS (ilearn UNAND)	Hyperbola equation [1]	3%
4/5	CLO 2 Students are able to master the concepts of curve parameterization and curvature of	Accurate understanding of related material	MIDTERM EXAM (3%)	• SL Studying : concept explanation discussion and question	• A.M Students look for references and study material on parametric	LMS (ilearn UNAND)	Parametric equations and curvature of curves [1]	3%

	curves in a plane, equations in polar coordinates and calculus in polar coordinates .			and answer course material [1 x 2 x 50 minutes]		equations and curvature of curves [2 x 2 x 60 minutes]			
4/6	CLO 1 Students are able to master theoretical concepts, especially related to the definition and basic properties of conic sections, translation and rotation and determine the equations of conic sections in Cartesian coordinates and draw sketches.	Accurate understanding of related material	MIDTERM EXAM (3%)		 elementary school Studying : concept explanation discussion and question and answer course material [1 x 2 x 50 minutes] 	material	LMS (ilearn UNAND) Google meet	Translation [1]	3%

5/7	CLO 1 Students are able to master theoretical concepts, especially related to the definition and basic properties of conic sections, translation and rotation and determine the equations of conic sections in Cartesian coordinates and draw sketches.	Accurate understanding of related material	MIDTERM EXAM (3%)	SL Studying : concept explanation discussion and question and answer course material [1 x 2 x 50 minutes] Tutorials [1 x 2 x 50 minutes]		A.M Students look for references and study material rotation [2 x 2 x 60 minutes]	LMS (ilearn UNAND)	Rotation [1]	3%
6/8	CLO 2 Students are capable master the concept of curve parameterization and curve curvature in the plane, equations in polar coordinates and calculus in polar coordinates .	Accurate understanding of related material	MIDTERM EXAM (4%)	SL Studying : concept explanation discussion and question and answer course material [1 x 2 x 50 minutes]		A.M Students look for references and study polar coordinates material [2 x 2 x 60] minutes	LMS (ilearn UNAND)	Polar coordinates [1]	3%
6/9	CLO 2 Students are able to master the concept of curve	Accurate understanding of related material	MIDTERM EXAM (4%)		SL Studying : concept explanation	AK Students look for references and study	LMS (ilearn UNAND)	Area in polar coordinates [1]	8%

	parameterization and curvature of curves in a plane, equations in polar coordinates and calculus in polar coordinates.		Task (5%)		discussion and question and answer course material [1 x 2 x 50 minutes]	material on areas in polar coordinates [2 x 2 x 60] minutes	Google meet		
7/10	CLO 2 Students are able to master the concept of curve parameterization and curvature of curves in a plane, equations in polar coordinates and calculus in polar coordinates.	Accurate understanding of related material Accuracy in answering quiz questions	MIDTERM EXAM (4%) Quiz (5%)	SL Studying : concept explanation discussion and question and answer course material [1 x 2 x 50 minutes]		A.M Students look for references and study material on the length of curves and tangent lines in polar coordinates [2 x 2 x 60] minutes	LMS (ilearn UNAND)	Length of curve and tangent line in polar coordinates [1]	8%
	I I			Μ	IDTERM EX	AM (30%)			
8/11	CLO 3 Students are able to generalize plane geometry problems to three- dimensional space geometry.	 Accuracy in explaining and understanding related material 	FINAL EXAM (3%) Quiz (5%)	Studying : concept explanation discussion and question and answer course material		Students look for references and study material on Cartesian coordinates in dimensional space three	LMS (ilearn UNAND)	Cartesian coordinates in dimensional space three [1]	8%

				[1 x 2 x 50] minutes	[2 x 2 x 60 minutes]			
8/12	CLO 4 Students are able to identify and explain problems related to plane equations, distance, area, volume	 Accuracy in explaining and understanding related material 	FINAL EXAM (3%)	Studying : concept explanation discussion and question and answer course material [1 x 2 x 50] minutes	Students look for references and study material on vectors and dot products [2 x 2 x 60 minutes]	LMS (ilearn UNAND)	Vectors and dot products and cross products [1]	3%
9/13	CLO 3 Students are able to generalize plane geometry problems to three- dimensional space geometry.	 Accuracy in explaining and understanding related material 	FINAL EXAM (3%)	Studying : concept explanation discussion and question and answer course material [1 x 2 x 50] minutes	Students look for references and study material on vector-valued functions [2 x 2 x 60 minutes]	LMS (ilearn UNAND)	Vector valued functions [1]	3%
10/14	CLO 3 Students are able to generalize plane geometry problems to three- dimensional space geometry	 Accuracy in explaining and understanding related material Accuracy in answering quiz questions 	FINAL EXAM (3%) Quiz (5%)	Studying : concept explanation discussion and question and answer course material	Students look for references and study curvilinear motion [2 x 2 x 60 minutes]	LMS (ilearn UNAND)	Curvilinear motion [1]	3%

				[1 x 2 x 50] minutes				
10/15	CLO 4 Students are able to identify and explain problems related to plane equations, distance, area, volume	 Accuracy in explaining and understanding related material 	FINAL EXAM (3%)		Students look for references and study the equations of lines in three- dimensional space [2 x 2 x 60 minutes]	LMS (ilearn UNAND)	Line equations in three-dimensional space [1]	3%
11/16	CLO 4 Students are able to identify and explain problems related to plane equations, distance, area, volume	 Accuracy in explaining and understanding related material 	FINAL EXAM (3%)	Studying : concept explanation discussion and question and answer course material [1 x 2 x 50] minutes	Students look for references and study the equations of tangent lines in three- dimensional space [2 x 2 x 60 minutes]	LMS (ilearn UNAND)	The equation of a tangent line in three-dimensional space [1]	3%
12/17	CLO 4 Students are able to identify and explain problems related to plane equations, distance, area, volume	 Accuracy in explaining and understanding related material 	FINAL EXAM (4%)	Studying : concept explanation discussion and question and answer course material [1 x 2 x 50] minutes	Students look for references and study surface equations in three- dimensional space [2 x 2 x 60 minutes]	LMS (ilearn UNAND)	Surface Equations in three-dimensional space [1]	4%

12/18	CLO 4 Students are able to identify and explain problems related to plane equations, distance, area, volume	 Accuracy in explaining and understanding related material 	FINAL EXAM (4%)	Studying : concept explanation discussion and question and answer course material [1 x 2 x 50] minutes	Students look for references and study tube coordinates [2 x 2 x 60 minutes]		LMS (ilearn UNAND)	Tube coordinates [1]	4 %
13/19	CLO 4 Students are able to identify and explain problems related to plane equations, distance, area, volume	 Accuracy in explaining and understanding related material Accuracy in answering quiz questions 	FINAL EXAM (4%) Quiz (5%)	Studying : concept explanation discussion and question and answer course material [1 x 2 x 50] minutes	Students look for references and study spherical coordinates [2 x 2 x 60 minutes]		LMS (ilearn UNAND)	Spherical coordinates [1]	9 %
14/20	CLO 5 Students are able to solve geometric problems on planes and space using mathematical software CLO 6 Students are able to communicate the results of their thoughts and work	 Skills in explaining in the form of presentations Accuracy of answers in discussions Skills in using mathematical software Accuracy in answering 	Task (5 %) Presentation (5 %)	Discussion/Pre sentation: concept explanation discussion and question and answer course material [1 x 2 x 50 minutes]	• A.M Students look for references independentl y regarding analytical geometry topics and use mathematical software to solve them	• AK Students discuss in groups and make presentations in class [1 x 2 x 60 minutes]	LMS (ilearn UNAND)	Group discussion/presen tation [1]	10 %

writ	bughts and work th orally and in iting	answering assignment questions Neatness in completing tasks Originality of task results			[1 x 2 x 60 minutes]				
to so prob and mati softw CLC Stud to co the n thou both	idents are able solve geometric oblems on planes d space using thematical tware	Skills in explaining in the form of presentations Accuracy of answers in discussions Skills in using mathematical software Accuracy in	Task (5 %) Presentation (5 %)	Discussion/Pre sentation: concept explanation discussion and question and answer course material [1 x 2 x 50 minutes]	• A.M Students look for references independentl y regarding analytical geometry topics and use mathematical software to solve them	• AK Students discuss in groups and make presentations in class [1 x 2 x 60 minutes]	LMS (ilearn UNAND)	Group discussion/presenta tion [1]	10 %
	h orally and in iting.	assignment questions Neatness in completing tasks Originality of task results			[1 x 2 x 60 minutes]				

Indicators, Criteria and Assessment Weights

1. Assessment Weight for Each Form of Assessment

NO	Form of Assessment	WEIGHT (%)
1	Mid-Term Exam	30 %
2	Final Exam	30%
3	Quizzes	15 %
4	Presentation	10 %
5	Tasks (Presentations, reports)	15 %
	TOTAL	100 %

2. Assessment weight for each course learning achievement

- CLO-1: 15 %
- CLO 2: 25%
- CLO 3: 20 %
- CLO 4: 20 %
- CLO 5: 10 %
- CLO 6: 10 %

II. Assessment Plan Table

	Form of assessment										
CLOs	Mid-Term Exam (%)	Final Exam (%)	Quizzes (%)	Presentation	Homework /Reports (%)	Total weight					
1. Students are able to master theoretical concepts, especially related to the definition and basic properties of conic sections, translation and rotation and determine the equations of conic sections in Cartesian coordinates and draw sketches. (ILO-2: PI-1, PI-2, PI-3))	15%					15%					
2. Students are able to master the concepts of curve parameterization and curvature of curves in a plane, equations in polar coordinates and calculus in polar coordinates. ILO-2: PI-1, PI-2, PI-3))	15%		5%		5%	25%					
3. Students are able to generalize plane geometry problems into three-dimensional space geometry. ILO-3: PI-1, PI-2, PI- 3))		15 %	5%			20%					
4. Students are able to identify and explain problems related to plane equations, distance, area and volume. (ILO 4: PI-1, PI-2, PI-3)		15%	5%			20%					
5. Students are able to solve geometric problems on planes and space using mathematical software. (ILO-6: PI-1- PI-4)				10%		10%					

6. Students are able to communicate the results of their						
thoughts and work both orally and in writing. (ILO-7: PI-1,					10%	10%
PI-2, PI-3)						
Total Weight	30%	30%	15%	10%	15%	100%

Matrix of CLOs and ILOs

	ILO																															
CT O		1			2			3			4			Į	5				6				7			8	8			ç)	
CLOs		PI			PI			PI			PI			F	PI				PI				PI			F	PI			Р	ľ	
	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	4	1	2	3	4	5	1	2	3	1	2	3	4	1	2	3	4
1				\checkmark	\checkmark	✓	\checkmark	~					\checkmark	✓	✓	\checkmark	✓	✓	\checkmark	~	✓											
2				\checkmark	\checkmark	✓	\checkmark	~					\checkmark	✓	✓	\checkmark	✓	✓	\checkmark	~	✓											
3				\checkmark	\checkmark	✓	✓	✓					\checkmark	✓	✓	\checkmark	✓	✓	\checkmark	~	✓											
4									~													✓										
5				\checkmark	\checkmark								✓	✓	✓	✓	✓	✓														
6				✓	\checkmark	~				~	~		~	~	~	~	~	✓	✓				~	✓								

7	J J J			
---	-------	--	--	--

Task	Task Type	Recommended Questions (reference [1])
1	Student's task on basic understanding of analytical geometry, parabola, ellipse, hyperbola, translation, axes rotation	Problem set 10.1, Problem set 10.2 Problem set 10.3 No 1-5 for each problem
2	Student's task on basic understanding of parametric representation and polar coordinate	Problem set 10.4 Problem set 10.5 Problem set 10.6 Problem set 10.7 No 1-5 for each problem
3	Student's task on basic understanding of Geometry in space and vectors	Problem set 11.1, Problem set 11.2 Problem set 11.3 Problem set 11.4 No 1-5 for each problem
4	Student's task on basic understanding of vector valued function, lines and tangent line cylindrical, curvature and spherical coordinates	Problem set 11.5 Problem set 11.6 Problem set 11.7 Problem set 11.8 Problem set 11.9 No 1-5 for each problem