SEMESTER STUDY PLAN APPLICATIONS OF GRAPH THEORY (ELECTIVE COURSE)

DEPARTMENT OF MATHEMATICS AND DATA SCIENCE FACULTY OF MATHEMATICS AND NATURAL SCIENCES UNIVERSITAS ANDALAS 2024

SEMESTER STUDY PLAN (SSP) BACHELOR PROGRAM OF MATHEMATICS FACULTY OF MATHEMATICS AND NATURAL SCIENCES UNIVERSITAS ANDALAS

Course l	Name		Course	e Code	URL	I-Learn	Credits	Semester	Compilation Date		
Applications of C	Graph Th	leory	MAT	61232	https://sci.ilea	rn.unand.ac.id/	3	5	12 May 2024		
Darcan In	Charge		Study Plan Creator			Head of Resea	rch Group	Head of Study Program			
Person In	Charge			Narwen, M.Si Prof. Syafrizal Sy Dr. Noverina							
Intended Learning	Intende	ed Learning									
Outcomes (ILO) and	Outcon	nes									
Performance	ILO-2	Possesses p	profound	knowled	lge of the basic co	oncept mathemation	cs				
Indicator (PI)		PI-1: An al	oility to e	xplain ba	sic mathematical	concepts					
		PI-2: An al	PI-2: An ability to provide examples that are relevant to basic mathematical concepts								
		PI-3: An ability to determine solutions to simple problems using basic mathematical concepts									
	ILO-3	An ability	to identify, explain and generalize simple mathematical								
		PI-1: An ab	: An ability to identify simple mathematical problems								
			PI-2: An ability to explain simple mathematical problems								
		PI-3: An ab	oility to ge	eneralize	simple mathema	tical problems					
	ILO-4	An ability	to use c	oncept a	nd fundamental	technique of ma	athematics ir	n solving sin	nple mathematical		
		problems									
			ability to ematical			c mathematical c	oncepts and	techniques	in solving simple		
			PI-2: An ability to illustrate simple mathematical problems based on appropriate basic mathematical concepts and techniques								
			oility to so iques	olve simp	ble mathematical	problems using a	ppropriate ba	asic mathem	atical concepts and		

 T	
ILO-5	An ability to formally and correctly proves a simple mathematical statement using facts and methods that
	have been studied.
	PI-1: An ability to identify formal structures and analogous forms in mathematics
	PI-2: An ability to use facts and apply methods to prove simple mathematical statements
	PI-3: An ability to present simple mathematical statement proof rigorously (sequentially and conscientious)
	PI-4: An ability to conclude or interpret result of the proving simple mathematical statement
ILO-6	Have ability data literacy and technology and can apply them in solving simple mathematical problems or other relevant fields
	PI-1: An ability to identify the right data and technology to solve simple mathematical problems or other fields
	PI-2: An ability to use data and technology and apply them to solve simple mathematical statements or other areas
	PI-3: An ability to process data using available technology in simple mathematical problems or other fields
	PI-4: An ability to conclude and interpret data processing results for simple mathematical problems or other fields
	PI-5: An ability to design an algorithm to solve simple mathematical problems or other fields
Course	Learning Outcomes
1	Understand the shortest path problem and minimum spanning tree, and be able to determine the shortest
	path and minimum spanning tree in each given graph.
2	Understand the Sperner Lemma and its proof
3	Understand the Connector Problems and the optimal trees in graphs
4	Understand the reliable network communication problem in graphs.
5	Understand the Chinese Postman Problem and minimum weighted graphs
6	Understand the Traveling Salesman Problem and Hamiltonicity in graphs
7	Understand the Personnel Assignment Problem and the Optimal Assignment Problem, and be able to
	determine the perfect matching in a graph
8	Understand the Timetabling Problem, and be able to determine some efficient time-schedule with edge
	coloring

	9 Understand the Schur Theore	em and Ramsey Theorem for some simple graphs.
Brief Description		plications of graph theory: The shortest path problem and minimum spanning
bile Description		Problems, The reliable network communication problem, The Chinese Postman
	L	blem, The Personnel Assignment Problem, The Optimal Assignment Problem,
	The Timetabling Problem, Schur The	9 i 0
Course Materials	1. The shortest path problem and	
	2. Sperner Lemma	initiation openanting tree
	3. Connector Problems	
	4. The reliable network communi	ication problem
	5. The Chinese Postman Problem	-
	6. The Traveling Salesman Proble	em
	7. The Personnel Assignment Pro	blem and the Optimal Assignment Problem
	8. The Timetabling Problem	
	9. Schur Theorem and Ramsey T	neorem
References	Main:	
	<u>,</u>	raph Theory with Applications, U.S.A, 1976
	Additional:	
		rls in Graph Theory, 2 nd edition, Academic Press, New York, 2001
Learning Media	Software:	Hardware:
	• LMS Unand	Computer/Laptop
	(http://fmipa.ilearn.unand.ac.id/	• Smartphone
)	-
	 Zoom meeting/ Teams 	LCD Projector
	• Whatsapp	
Team Teaching	1. Narwen, M.Si	
Assessment	Homework, Quiz, Mid-Term exam, Fin	nal exam
Required courses	MAT61231 Introduction to Graph The	orv

Weekly Study Plan

						ities/Forms of Learn [Time estimated]				
Week/	Course	Indicator	Assessment	Synchron	ious*	Asynchro	nous**			Weight
Meet (1)	Outcomes (2)	(3)	(4)	Face to face Offline (5)	Face to face Online (6)	Individual (7)	Collaboration (8)	Media (9)	Subject, references (10)	(11)

1/1	 Introduction to SSP, Material explanation, task explanation, discussion, and question- and-answer lecture material CLO-1 Understand the shortest path problem and minimum spanning tree, and be able to determine the shortest path and minimum spanning tree in each given graph 	 Discipline in carrying out course contracts Accurate understand ing of related material 	Activeness in lectures	Teaching and discussion: - Introduction to SSP - material explanation - task explanation - discussion and question-and- answer lecture material [1 x 3 x 50 minute]	Students read and study the learning materials individually [1 x 3 x 60 minute]	Students discuss in groups about lecture material [1 x 3 x 50 minutes]	• PPT • i-learn (LMS Unand) Specific condition: Zoom meeting, WA group, learning video	 Assessment Rules, SSP, Syllabus, Tuition Contract The shortest path algorithm between two vertices in network Dijkstra algorithm 	
2/2	CLO-2 Understand the Sperner Lemma and its proof	Accurate understandi ng of related material	Activeness in lectures	Teaching and discussion: - material explanation [1 x 3 x 50 minute]	Students read and study the learning materials individually [1 x 3 x 60 minute]	Students discuss in groups about lecture material [1 x 3 x 50 minutes]	●i-learn (LMS Unand)	 The subdivision operation in graph Sperner theorem and its proof 	

3/3	CLO-3 Understand the Connector Problems and the optimal trees in graphs	Accurate understandi ng of related material	Activeness in lectures	Teaching and discussion: material explanation [1 x 3 x 50 minute]	study the materials individu	0 1	• i-learn (LMS Unand)	• Network design determination to minimize total construction costs	
4/4	CLO-3 Understand the Connector Problems and the optimal trees in graphs	Accurate understandi ng of related material	Activeness in lectures	Teaching and discussion: material explanation [1 x 3 x 50 minute]	study the materials individu	0 1	•i-learn (LMS Unand)	 Optimal tree algorithm, Kruskal algorithm 	
5/5	CLO-4 Understand the reliable network communicatio n problem in graphs	Accurate understandi ng of related material	Activeness in lectures	Teaching and discussion: material explanation [1 x 3 x 50 minute]	study the materials individu [1 x 3 x 6	ally lecture 60 minutes] material [1 x 3 x 60 minutes]	• i-learn (LMS Unand)	• The minimum weight of a spanning subgraph k- connected graph	
6/6	CLO-5 Understand the Chinese Postman Problem and minimum	Accurate understandi ng of related material	Task 1	Teaching and discussion: material explanation [1 x 3 x 50 minute]	study the materials individu		•i-learn (LMS Unand)	Chinese Postman Problem Tour with minimum weight of a connected graph	10 %

7/7	weighted graphs CLO-5 Understand the Chinese Postman Problem and minimum weighted graphs	Accurate understandi ng of related material		Teaching and discussion: material explanation [1 x 3 x 50 minute]	Students read and study the learning materials individually [1 x 3 x 60 minute]	discuss in	Zoom meeting, WA group, learning video) • PPT • i-learn (LMS Unand) Specific condition: Zoom meeting, WA group, learning video)	Fleury algorithm	15 %
8 and 9	MID-TERM EX	XAM					· · · ·		30 %
10/10	CLO-6 Understand the Traveling Salesman Problem and Hamiltonicity in graphs	Accurate understanding of related material	Activeness in lectures	Teaching and discussion: material explanation [1 x 3 x 50 minute]	Students read and study the learning materials individually [1 x 3 x 60 minutes]	Students discuss in groups about lecture material [1 x 3 x 60 minutes]	• i-learn (LMS Unand)	 Traveling Salesman Problem Hamiltonian cycle with minimum weight in graphs 	
11/11	CLO-7 Understand the Personnel Assignment Problem and the Optimal Assignment	Accurate understanding of related material	Activeness in lectures	Teaching and discussion: explanation of learning material [1 x 3 x 50 minutes]	Students read and study the learning materials individually [1 x 3 x 60 minutes]	Students discuss in groups about lecture material [1 x 3 x 60 minutes]	• i-learn (LMS Unand)	 Perfect matching in graph, Hungarian method 	

	Problem, and be able to determine the perfect matching in a graph						meeting, WA group, learning video)		
12/12	CLO-7 Understand the Personnel Assignment Problem and the Optimal Assignment Problem, and be able to determine the perfect matching in a graph	Accurate understanding of related material	Activeness in lectures	Teaching and discussion: explanation of learning material [1 x 3 x 50 minutes]	Students read and study the learning materials individually [1 x 3 x 60 minutes]	Students discuss in groups about lecture material [1 x 3 x 60 minutes]	• PPT •i-learn (LMS Unand) Specific condition: Zoom meeting, WA group, learning video)	 Maximal assignment to improve the effectiveness of an assignment Kuhn- Munkres algorithm 	
13/13	CLO-8 Understand the Timetabling Problem, and be able to determine some efficient time-schedule with edge coloring	Accurate understanding of related material	Activeness in lectures	Teaching and discussion: explanation of learning material [1 x 3 x 50 minutes]	Students read and study the learning materials individually [1 x 3 x 60 minutes]	discuss in	• PPT • i-learn (LMS Unand) Specific condition: Zoom meeting, WA group, learning video)	Edge coloring in graph	
14/14	CLO-8 Understand the Timetabling Problem, and be able to	Accurate understanding of related material	Activeness in lectures	Teaching and discussion: material explanation [1 x 3 x 50 minute]	Students read and study the learning materials individually [1 x 3 x 60 minutes]	Students discuss in groups about lecture material [1 x 3 x 60 minutes]	• PPT • i-learn (LMS Unand) Specific condition:	Finding the optimal solution of timetabling and scheduling	

15/15	determine some efficient time-schedule with edge coloring CLO-9 Understand the Schur Theorem and Ramsey Theorem for some simple graphs	Accurate understanding of related material	Task 2	Teaching and discussion: material explanation [1 x 3 x 50 minute]	Students read and study the learning materials individually [1 x 3 x 60 minutes]	discuss in	Zoom meeting, WA group, learning video) • PPT • i-learn (LMS Unand) Specific condition: Zoom meeting, WA group, learning video)	problems using edge coloring Schur theorem and Ramsey theorem	10 %
16/16	Understand the Schur Theorem and Ramsey Theorem for some simple graphs	 Accurate understandi ng of related material Accuracy in answering assignment questions Neatness of task execution Originality of task 		 Teaching and discussion: explanation of learning material explanation of the task explanation of the assessment [1 x 3 x 50 minutes] 	 Students read and study learning materials Students do assignments independently 	discuss in groups about lecture	 PPT i-learn (LMS Unand) Specific condition: Zoom meeting, WA group, learning video) 	Some examples of Ramsey theorem for simple graphs	10 %
17 s/d 18	FINAL EXAMI	NATION					I		30 %

1 credit = 50 minutes face-to-face meeting, 60 minutes structured study, 60 minutes independent study Each meeting duration is 2 credits = 2×50 minutes

Indicators, Criteria, and Assessment Weights

1. Assessment weight for each Assessment

NO	Assessment	Weight (%)
1	Mid-Term Exam	30
2	Final Exam	30
3	Homework	20
4	Quiz	20
	TOTAL	100

- 2. Assessment weight for Intended Learning Outcome
 - a) CLO-1: 10 %
 - b) CLO-2. 10 %
 - c) CLO-3: 10 %
 - d) CLO-4: 10 %
 - e) CLO-5: 10 %
 - f) CLO-6: 10 %
 - g) CLO-7: 10 %
 - h) CLO-8: 20 %
 - i) CLO-9: 10 %

Assessment Plan Table:

ASSESSMENT	Ta	nsk	Qu	ıiz	Mid-term Exam	Final Exam	TOTAL
CLO	1	2	1	2			
CLO-1	5 %				5 %		10 %
Understand the shortest path problem and minimum							
spanning tree, and be able to determine the shortest path							
and minimum spanning tree in each given graph.							
CLO-2	5%				5 %		10 %
Understand the Sperner Lemma and its proof							
CLO-3			5 %		5 %		10%
Understand the Connector Problems and the optimal							
trees in graphs							
CLO-4			5 %		5 %		10 %
Understand the reliable network communication							
problem in graphs.							
CLO-5					10 %		10 %
Understand the Chinese Postman Problem and							
minimum weighted graphs							
CLO-6		5 %				5 %	10%
Understand the Traveling Salesman Problem and							
Hamiltonicity in graphs							
CLO-7		5 %				5 %	10 %
Understand the Personnel Assignment Problem and the							
Optimal Assignment Problem, and be able to determine							
the perfect matching in a graph							

ASSESSMENT	Tas	k	Qu	iz	Mid-term Exam	Final Exam	TOTAL
CLO-8				5 %		15 %	20 %
Understand the Timetabling Problem, and be able to							
determine some efficient time-schedule with edge							
coloring							
CLO-9				5 %		5 %	10 %
Understand the Schur Theorem and Ramsey Theorem							
for some simple graphs.							
TOTAL BOBOT	20%	/0	20 ⁰	%	30%	30%	100%

Matrix of CLO and ILO

																II	O															
CLO	1		2			3			4			5				6				7			8			9						
	PI			PI			PI			PI			PI				PI				PI			PI			PI					
	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	4	1	2	3	4	5	1	2	3	1	2	3	4	1	2	3	4
1				\checkmark																												
2				\checkmark																												
3				\checkmark																												
4				\checkmark	>	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	>	\checkmark	\checkmark	\checkmark	\checkmark	>	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark											
5				\checkmark																												
6				\checkmark																												
7				\checkmark																												
8				\checkmark																												
9				\checkmark																												