SEMESTER STUDY PLAN INTRODUCTION TO GRAPH THEORY (ELECTIVE COURSE)

DEPARTMENT OF MATHEMATICS AND DATA SCIENCE FACULTY OF MATHEMATICS AND NATURAL SCIENCES UNIVERSITAS ANDALAS 2024

SEMESTER STUDY PLAN (SSP) BACHELOR PROGRAM OF MATHEMATICS FACULTY OF MATHEMATICS AND NATURAL SCIENCES UNIVERSITAS ANDALAS

Course N	Name		Cours	e Code	URL I	-Learn	Credits	Semester	Compilation Date
INTRODUCTION TO	GRAPH	THEORY	MAT	61231	https://sci.ilea	<u>rn.unand.ac.id/</u>	3	3	12 May 2024
			S	tudy Plar	n Creator	Head of Resea	rch Group	Head of	Study Program
Person In Charge				Prof. Syaf	frizal Sy	Prof. Syafr	izal Sy	Dr. No	verina Alfiany
				Dr. Lyra Yulianti		-			
Intended Learning	Intende	d Learning							
Outcomes (ILO) and	Outcom	nes							
Performance	ILO-2	Possesses p	Possesses profound knowledge of the basic concept mathematics						
Indicator (PI)		PI-1: An al	PI-1: An ability to explain basic mathematical concepts						
		PI-2: An al	PI-2: An ability to provide examples that are relevant to basic mathematical concepts						
		PI-3: An al	PI-3: An ability to determine solutions to simple problems using basic mathematical concepts						
	ILO-3	An ability	to identif	y, explain	and generalize si	imple mathemation	cal		•
		PI-1: An ab	ility to id	entify sin	nple mathematica	l problems			
		PI-2: An ab	An ability to explain simple mathematical problems						
		PI-3: An ab	ility to ge	eneralize s	simple mathemat	ical problems			
	ILO-4	An ability	to use c	concept a	nd fundamental	technique of ma	thematics in	solving sin	nple mathematical
		problems		1		1		0	1
		PI-1: An a	bility to	choose a	appropriate basic	mathematical c	oncepts and	techniques	in solving simple
		math	ematical	problems	11 1		1	1	0 1
		PI-2: An a	bility to	illustrate	e simple mathem	natical problems	based on an	opropriate b	asic mathematical
		conce	pts and t	echniques	5	I	1		
		PI-3: An a	n ability to solve simple mathematical problems using appropriate basic mathematical concepts and					atical concepts and	
		techn	techniques						
		tecini	iques						

II O-5	An ability to formally and correctly proves a simple mathematical statement using facts and methods that
	have been studied
	DE 1. An abilita to identific (annul atmatumes and anales and famous in mathematics
	PI-1: An ability to identify formal structures and analogous forms in mathematics
	PI-2: An ability to use facts and apply methods to prove simple mathematical statements
	PI-3: An ability to present simple mathematical statement proof rigorously (sequentially and conscientious)
	PI-4: An ability to conclude or interpret result of the proving simple mathematical statement
ILO-6	Have ability data literacy and technology and can apply them in solving simple mathematical problems or
	other relevant fields
	PI-1: An ability to identify the right data and technology to solve simple mathematical problems or other
	fields
	PI-2: An ability to use data and technology and apply them to solve simple mathematical statements or other
	areas
	PI-3: An ability to process data using available technology in simple mathematical problems or other fields
	PI-4: An ability to conclude and interpret data processing results for simple mathematical problems or other
	fields
	PI-5: An ability to design an algorithm to solve simple mathematical problems or other fields
Course	Learning Outcomes
1	Understand some basic concepts in graph theory
2	Understand some properties of trees and their specialties
3	Understand the concept of connectivity in graph, and able to determine the edge-connectivity and vertex-
	connectivity of a graph
4	Understand the concept of eulerian tour and hamiltonian cycle in a graph, and able to determine the
	eulerian tour or Hamiltonian cycle in a graph
5	Understand the concept of vertex coloring and edge coloring in graph, and able to determine the vertex-
_	chromatic number and edge-chromatic number of a graph
6	Understand the concept of matching, planarity, and its properties in graph, and able to determine maximal
_	and perfect matching in a graph.

brief Description	This course discusses about some basic concepts in graph theory, some properties of trees and their specialties				
	connectivity in graph, Eulerian tour	and Hamiltonian cycle in a graph, matching, vertex coloring, chromatic			
	number of a graph, planarity, Kurato	wski Theorem, and some simple applications.			
Course Materials	1. Graph and subgraph				
	2. Trees and their properties				
	3. Connectivity				
	4. Eulerian tour and Hamiltonian c	ycle			
	5. Matching				
	6. Coloring in Graphs: Vertex, edge, and map colorings				
	7. Vertex-chromatic and edge-chro	matic numbers of graph			
	8. Planar graphs				
References					
	1. J.A Bondy and U.S. R. Murty, Graph Theory with Applications, U.S.A, 1976				
	Additional:				
	1. N. Harsfield and G. Ringer, Pear	ls in Graph Theory, 2 nd edition, Academic Press, New York, 2001			
Learning Media	Software:	Hardware:			
	• LMS Unand	Computer/Laptop			
	 LMS Unand (<u>http://fmipa.ilearn.unand.ac.id/</u>) 	Computer/LaptopSmartphone			
	 LMS Unand (<u>http://fmipa.ilearn.unand.ac.id/</u>) Zoom meeting/ Teams 	 Computer/Laptop Smartphone LCD Projector 			
	 LMS Unand (<u>http://fmipa.ilearn.unand.ac.id/</u>) Zoom meeting/ Teams Whatsapp 	 Computer/Laptop Smartphone LCD Projector 			
Team Teaching	 LMS Unand (<u>http://fmipa.ilearn.unand.ac.id/</u>) Zoom meeting/ Teams Whatsapp 1. Prof. Dr. Syafrizal Sy 	 Computer/Laptop Smartphone LCD Projector 			
Team Teaching	 LMS Unand (<u>http://fmipa.ilearn.unand.ac.id/</u>) Zoom meeting/ Teams Whatsapp 1. Prof. Dr. Syafrizal Sy 2. Dr. Lyra Yulianti 	 Computer/Laptop Smartphone LCD Projector 			
Team Teaching Assessment	 LMS Unand (http://fmipa.ilearn.unand.ac.id/) Zoom meeting/ Teams Whatsapp 1. Prof. Dr. Syafrizal Sy 2. Dr. Lyra Yulianti Homework, Quiz, Mid-Term exam, 	 Computer/Laptop Smartphone LCD Projector Final exam			
Team Teaching Assessment Required courses	 LMS Unand (http://fmipa.ilearn.unand.ac.id/) Zoom meeting/ Teams Whatsapp 1. Prof. Dr. Syafrizal Sy 2. Dr. Lyra Yulianti Homework, Quiz, Mid-Term exam, - 	 Computer/Laptop Smartphone LCD Projector Final exam			
Team Teaching Assessment Required courses Academic Norms	 LMS Unand (http://fmipa.ilearn.unand.ac.id/) Zoom meeting/ Teams Whatsapp Prof. Dr. Syafrizal Sy Dr. Lyra Yulianti Homework, Quiz, Mid-Term exam, https://akademik.unand.ac.id/images 	 Computer/Laptop Smartphone LCD Projector Final exam /2022-03-			
Team Teaching Assessment Required courses Academic Norms	 LMS Unand (http://fmipa.ilearn.unand.ac.id/) Zoom meeting/ Teams Whatsapp Prof. Dr. Syafrizal Sy Dr. Lyra Yulianti Homework, Quiz, Mid-Term exam, https://akademik.unand.ac.id/images 30%20Peraturan%20Rektor%20Nomor 	 Computer/Laptop Smartphone LCD Projector Final exam /2022-03- %207% 20Tahun% 202022% 20Penyelenggaraan% 20Pendidikan-			

Weekly Study Plan

Week	Course	Indicator	Assessment	Synchron	ous*	Asynchro	nous**		Subject,	Weight
(1)	Outcomes (2)	(3)	(4)	Face to face Offline (5)	Face to face Online (6)	Individual (7)	Collaboration (8)	Media (9)	references (10)	(11)
1/1	 Introduction to SSP, Material explanation, task explanation, discussion, and question- and-answer lecture material CLO-1 Understand some basic concepts in graph theory 	 Discipline in carrying out course contracts Accurate understanding of related material 	Activeness in lectures	 Teaching and discussion: Introduction to SSP material explanation task explanation discussion and question-and- answer lecture material [1 x 3 x 50 minutes] 		Students read and study the learning materials individually [1 x 3 x 60 minutes]	Students discuss in groups about lecture material [1 x 3 x 60 minutes]	 PPT i-learn (LMS Unand) Specific condition: Zoom meeting, WA group, learning video 	 Assessment Rules, SSP, Syllabus, Tuition Contract Definition of graph, subgraphs, and some terminologies in graph theory: Simple graph, isomorphism in graph, adjacency, and incidence 	

								matrices	
2/2	CLO-1 Understand some basic concepts in graph theory	Accurate understanding of related material	Activeness in lectures Task 1	Teaching and discussion: - material explanation [1 x 3 x 50 minutes]	Students read and study the learning materials individually [1 x 3 x 60 minutes]	Students discuss in groups about lecture material [1 x 3 x 60 minutes]	 PPT i-learn (LMS Unand) Specific condition: Zoom meeting, WA group, learning video 	 Degree of a vertex, path and connectivity Cycle graph Shortest path problems 	5%
3/3	CLO-2 Understand some properties of trees and their specialties	Accurate understanding of related material	Activeness in lectures Task 1	Teaching and discussion: material explanation [1 x 3 x 50 minutes]	Students read and study the learning materials individually [1 x 3 x 60 minutes]	Students discuss in groups about lecture material [1 x 3 x 60 minutes]	 PPT i-learn (LMS Unand) Specific condition: Zoom meeting, WA group, learning video 	 Trees Cut-edges, bonds Cut-vertex 	5%
4/4	CLO-3 Understand the concept of connectivity in graph, and able to determine the edge- connectivity and vertex- connectivity of a graph	Accurate understanding of related material	Activeness in lectures	Teaching and discussion: material explanation [1 x 3 x 50 minutes]	Students read and study the learning materials individually [1 x 3 x 60 minutes]	Students discuss in groups about lecture material [1 x 3 x 60 minutes]	 PPT i-learn (LMS Unand) Specific condition: Zoom meeting, WA group, learning video) 	• Cayley Formula and Connector problem	
5/5	CLO-3 Understand the	Accurate understanding	Activeness in lectures	Teaching and discussion:	Students read and study the	Students discuss in	• PPT	• Connectivity in graph	

	conceptofconnectivityingraph, and abletodeterminetheedge-connectivityandvertex-connectivityofa graph	of related material		material explanation [1 x 3 x 50 minutes]	learning materials individually [1 x 3 x 60 minutes]	groups about lecture material [1 x 3 x 60 minutes]	• i-learn (LMS Unand) Specific condition: Zoom meeting, WA group, learning video)	 Edge- connectivity Vertex- connectivity Blocks 	
6/6	CLO-3 Understand the concept of connectivity in graph, and able to determine the edge- connectivity and vertex- connectivity of a graph	Accurate understanding of related material	Activeness in lectures	Teaching and discussion: material explanation [1 x 3 x 50 minutes]	Students read and study the learning materials individually [1 x 3 x 60 minutes]	Students discuss in groups about lecture material [1 x 3 x 60 minutes]	 PPT i-learn (LMS Unand) Specific condition: Zoom meeting, WA group, learning video) 	• The Traveling Salesman Problem dan the Chinese Postman Problem.	
7/7	CLO-4 Understand the concept of eulerian tour and hamiltonian cycle in a graph, and able to determine the eulerian tour or Hamiltonian cycle in a graph	Accurate understanding of related material	Quiz 1	Teaching and discussion: material explanation [1 x 3 x 50 minutes]	Students read and study the learning materials individually [1 x 3 x 60 minutes]	Students discuss in groups about lecture material [1 x 3 x 60 minutes]	 PPT i-learn (LMS Unand) Specific condition: Zoom meeting, WA group, learning video) 	• Eulerian Tour • Hamiltonian cycle	15 %
8 and 9	MID-TERM EXA	M							30 %

10/10	CLO-5 Understand the concept of vertex coloring and edge coloring in graph, and able to determine the vertex- chromatic number and edge-chromatic number of a graph	Accurate understanding of related material	Activeness in lectures	Teaching and discussion: material explanation [1 x 3 x 50 minutes]	Students read and study the learning materials individually [1 x 3 x 60 minutes]	Students discuss in groups about lecture material [1 x 3 x 60 minutes]	 PPT i-learn (LMS Unand) Specific condition: Zoom meeting, WA group, learning video) 	 Vertex coloring Vertex- chromatic number Vizing theorem Timetabling Theorem 	
11/11	CLO-5 Understand the concept of vertex coloring and edge coloring in graph, and able to determine the vertex- chromatic number and edge-chromatic number of a graph	Accurate understanding of related material	Activeness in lectures	Teaching and discussion: explanation of learning material [1 x 3 x 50 minutes]	Students read and study the learning materials individually [1 x 3 x 60 minutes]	Students discuss in groups about lecture material [1 x 3 x 60 minutes]	 PPT i-learn (LMS Unand) Specific condition: Zoom meeting, WA group, learning video) 	 Edge coloring Edge- chromatic number 	
12/12	CLO-6 Understand the concept of matching, planarity, and its properties in graph, and able to determine	Accurate understanding of related material	Activeness in lectures	Teaching and discussion: explanation of learning material [1 x 3 x 50 minutes]	Students read and study the learning materials individually [1 x 3 x 60 minutes]	Students discuss in groups about lecture material [1 x 3 x 60 minutes]	• PPT • i-learn (LMS Unand) Specific condition: Zoom meeting, WA	 Matching Covering in bipartite graph Perfect matching, 	

	maximal and perfect matching in a graph						group, learning video)	 Maximal matching The assignment problem 	
13/13	CLO-6 Understand the concept of matching, planarity, and its properties in graph, and able to determine maximal and perfect matching in a graph	Accurate understanding of related material	Activeness in lectures	Teaching and discussion: explanation of learning material [1 x 3 x 50 minutes]	Students read and study the learning materials individually [1 x 3 x 60 minutes]	Students discuss in groups about lecture material [1 x 3 x 60 minutes]	 PPT i-learn (LMS Unand) Specific condition: Zoom meeting, WA group, learning video) 	Scheduling problems	
14/14	CLO-6 Understand the concept of matching, planarity, and its properties in graph, and able to determine maximal and perfect matching in a graph	Accurate understanding of related material	Activeness in lectures	Teaching and discussion: material explanation [1 x 3 x 50 minutes]	Students read and study the learning materials individually [1 x 3 x 60 minutes]	Students discuss in groups about lecture material [1 x 3 x 60 minutes]	 PPT i-learn (LMS Unand) Specific condition: Zoom meeting, WA group, learning video) 	 Planar and plane graphs Dual graph 	
15/15	CLO-6 Understand the concept of matching, planarity, and its properties in	Accurate understanding of related material	Activeness in lectures	Teaching and discussion: material explanation [1 x 3 x 50 minutes]	Students read and study the learning materials individually [1 x 3 x 60 minutes]	Students discuss in groups about lecture material [1 x 3 x 60 minutes]	• PPT • i-learn (LMS Unand) Specific condition:	Kuratowski Theorem	

	graph, and able to determine maximal and perfect matching in a graph							Zoom meeting, WA group, learning video)		
16/16	Review	 Accurate understanding of related material Accuracy in answering assignment questions Neatness of task execution Originality of task 	Quiz 2	 Teaching and discussion: explanation of learning material explanation of the task explanation of the assessment [1 x 3 x 50 minutes] 		 Students read and study learning materials Students do assignments independently [1 x 3 x 60 minutes] 	Students discuss in groups about lecture material and assignment [1 x 3 x 60 minutes]	 PPT i-learn (LMS Unand) Specific condition: Zoom meeting, WA group, learning video) 	Review materia 1 topics	15 %
17 s/d 18	FINAL EXAMIN	NATION								30 %
	1 credit =	50 minutes face-to	-face meet	ing 60 minutes struc	tured study 6	n minutes indene	ndent study			

1 credit = 50 minutes face-to-face meeting, 60 minutes structured study, 60 minutes independent study Each meeting duration is 2 credits = 2×50 minutes

Indicators, Criteria, and Assessment Weights

1. Assessment weight for each Assessment

NO	Assessment	Weight (%)
1	Mid-Term Exam	30
2	Final Exam	30
3	Homework	10
4	Quiz	30

TOTAL	100

- 2. Assessment weight for Intended Learning Outcome
 - a) CLO-1: 20 %
 - b) CLO-2. 20 %
 - c) CLO-3: 20 %
 - d) CLO-4: 20 %
 - e) CLO-5: 10 %
 - f) CLO-6: 10 %

Assessment	Plan	Table:
1 100 COoline III	I IMII	I UDIC.

ASSESSMENT	Task	Qui	z	Mid-term Exam	Final Exam	TOTAL
CLO	1	1	2			
CLO-1	5 %	5%		10%		20 %
Understand some basic concepts in graph theory						
CLO-2	5 %	5%		10%		20 %
Understand some properties of trees and their						
specialties						
CLO-3		5 %		10%	5 %	20%
Understand the concept of connectivity in graph,						
and able to determine the edge-connectivity and						
vertex-connectivity of a graph						
CLO-4			10 %		10 %	20 %
Understand the concept of eulerian tour and						
hamiltonian cycle in a graph, and able to determine						

the eulerian tour or Hamiltonian cycle in a graph						
CLO-5			5 %		5 %	10 %
Understand the concept of vertex coloring in graph,						
and able to determine the chromatic number of a						
graph						
CLO-6					10%	10%
Understand the concept of edge coloring, matching,						
planarity, and its properties in graph, and able to						
determine maximal and perfect matching in a graph.						
TOTAL BOBOT	10%	30%	0	30%	30%	100%

Matrix of CLO and ILO

	ILO																															
CLO		1		2 3					4		5				6				7			8			9							
CLU	PI PI			PI			PI			PI			PI				PI			PI				PI								
	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	4	1	2	3	4	5	1	2	3	1	2	3	4	1	2	3	4
1				\checkmark	\checkmark	\checkmark	\checkmark	>																								
2				\checkmark	\checkmark	\checkmark	\checkmark	\checkmark																								
3				\checkmark	\checkmark	\checkmark	\checkmark	\checkmark																								
4				\checkmark	\checkmark	\checkmark	\checkmark	\checkmark																								
5				<	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	<	\checkmark	\	\checkmark	<	\checkmark	\	 	<	\checkmark	\checkmark	\checkmark											
6				\checkmark	\checkmark	\checkmark	\checkmark	\checkmark																								