SEMESTER STUDY PLAN INTRODUCTION TO MATRIX ALGEBRA (ELECTIVE COURSE)

DEPARTMENT OF MATHEMATICS AND DATA SCIENCE FACULTY OF MATHEMATICS AND NATURAL SCIENCES UNIVERSITAS ANDALAS

2024

SEMESTER STUDY PLAN (SSP) BACHELOR PROGRAM OF MATHEMATICS FACULTY OF MATHEMATICS AND NATURAL SCIENCES UNIVERSITAS ANDALAS

Course Name	e	Course Code	U	RL I-Learn	Credits	Semester	Compilation Date			
Introduction to Matrix	x Algebra	MAT62211	MAT62211 <u>https://sci.ilearn.unand.ac.id</u>		3	4	May 12 th , 2024			
Barraan in Char		Study Plan Creator	ſ	ch Group Head of Study Program						
Person in Cha	ige	Dr. Yanita		akar, M.Si	Dr. N	overina Alfiany				
	Intended	Learning Outcomes				·				
Intended Learning	ILO-2	Possesses profound knowledg	sesses profound knowledge of the basic concept mathematics							
Outcomes (ILO) and		PI-1: An ability to explain bas	ic mathem	atical concepts						
Performance		PI-2: An ability to provide exa		-	ic mathemati	ical concepts				
Indicator (PI)		PI-3: An ability to determine	-			-	oncepts			
	ILO-3	An ability to identify, explain	and genera	alize simple mather	natical		•			
		PI-1: An ability to identify sim	ple mather	natical problems						
		PI-2: An ability to explain simple	T	1						
		PI-3: An ability to generalize s	imple matl	nematical problems	5					
	ILO-4	An ability to use concept and f				olving simple	mathematical			
		problems		1		0 1				
		PI-1: An ability to choose appr mathematical problems	I-1: An ability to choose appropriate basic mathematical concepts and techniques in solving simple							
		PI-2: An ability to illustrate sir concepts and techniques	-	ematical problems l	based on app	ropriate basic	mathematical			

		PI-3: An ability to solve simple mathematical problems using appropriate basic mathematical concepts and
		techniques
	ILO-5	An ability formally and correctly proves a simple mathematical statement using facts and methods that
		have been studied
		PI-1: An ability to identify the formal structures and analogous forms in mathematics
		PI-2: An ability to use fact and apply methods to proves simple mathematical statements
		PI-3: An ability to present simple mathematical statement proof rigorously (sequentially and conscientious)
		PI-4: An ability to conclude or interpret result of the proving simple mathematical statement
	Course l	Learning Outcomes
	1	An ability to prove the properties of the unit matrix, transvection matrix, dilation matrix, and permutation matrix (ILO 2: PI 1, 2, 3; ILO 3: PI 1, 2)
	2	An ability to understand and prove special formulas in matrices (Hendersen Searle formula, Banacheiwicz inver formula, and Schur complement) (ILO 3: PI 1, 2, 3; ILO 4, PI 1; ILO 5, PI 1, 2, 3)
	3	An ability to factor matrices with various types of factorizations (LU factorization, Hermite factorization, full rank factorization, and singular value decomposition) (ILO 4: PI 1, 2, 3; ILO 5: PI 1, 2, 3)
	4	An ability to determine the pseudo-inverse of a matrix (left inverse, right inverse, and Moore-Penrose inverse) (ILO 4: PI 1, 2, 3; ILO 5: PI 1, 2, 3)
Brief Description	for stude	rse will provide and discuss several fundamental concepts in matrix theory. This course also provides a vehicle ents to practice creative thinking in solving problems in matrix theory. This course is given with an emphasis g students a lot of time to carry out problem-solving ranging from simple problems to quite complex ones.
		nit Matrix ransvection Matrix
Course Material		vilation Matrix
		ermutasi Matrix
		chur's Complement
		anacheiwicz Inverse Formula
		lenderson Searle Formula
		U Dekomposition (Factorization)

	9. Permutation Matrix and <i>LU</i> Dek	omposition							
	10. Singular Value Decomposition								
	11. Eselon Hermite Form								
	12. Full Rank Factorization								
	13. Left Inverse and Right Inverse								
	14. Moore-Penrose Inverse								
	Main								
		rix Theory: From Generalized Inverses to Jordan Form, Chapman & Hall CRC,							
	· · · · · ·								
References	pure-and-applied-mathematics-d16	52087962.html							
	Additional								
		. Generalized Inverses: Theory and Application, 2 nd ed. Springer-Verlag, New							
		generalized-inverses-theory-and-applications-d158610187.html							
	Software:	Hardware:							
	• LMS Unand	Computer/Laptop							
Learning Media	(http://fmipa.ilearn.unand.ac.id/)	• Smartphone							
	• Zoom meeting	• Smartphone							
	0								
	• Whatsapp								
Team Teaching	Dr. Yanita								
Assessment	Task (Homework), Quizzes, Mid-Term	k (Homework), Quizzes, Mid-Term exam, Final exam							
Required Course	Elementary Linear Algebra	mentary Linear Algebra							
Academic Norms	https://akademik.unand.ac.id/images								
		%207%20Tahun%202022%20Penyelenggaraan%20Pendidikan-							
	khusus%20Bab%20II.pdf								

Weekly Study Plan

		Indicator	Assessment			es/Forms of Learning [ime estimated]	;			
Week/ Meet	Course			Synchronous*		Asynchror	Asynchronous**			Weight
(1)	Outcomes (2)	(3)	(4)	Face to face Offline (5)	Face to face Online (6)	Individual (7)	Collaboratio n (7)	Media (9)	references (10)	(11)
1/1	Non-CLO (review matrix theory)	Accuracy in solving problems in basic matrix theory		Teaching and discussion: - explanation of learning material - explanation of the task - explanation of the assessment [1 × 3 × 50 minutes]	Teaching and discussion: - explanation of learning material - explanation of the task - explanation of the assessment [1 × 3 × 50 minutes] (Specific conditions: The total number of blended learning meetings is 40% of the total number of meetings)	Students read and study learning materials from the main and additional references [1 × 3 × 120 minutes]		 PPT I learn (LMS Unand) (Specific condition: Zoom meeting, WA group, learning video) 	 Tuition Contract Semester Study Plan Operations on matrix Elementary row operations elementer Gauss-Jordan Elimination Determinant Inverse matrix Properties of inverse matrix 	

2,3/2,3	CLO-1 Able to prove the properties of the unit matrix, transvection matrix, dilation matrix, and permutation matrix (ILO 2: PI 1, 2, 3; ILO 3: PI 1, 2)	 Accuracy in distinguishing between elementary matrices and non-elementary matrices. Accuracy in determining the unit matrix. Accuracy in determining the unit matrix. Accuracy in determining the unit matrix. Accuracy in determining the transvection matrix <i>Tij(c)</i> proving the properties of the transvection matrix. Accuracy in determining the dilation matrix. Accuracy in determining the dilation matrix. Accuracy in determining the dilation matrix. 	Non test : 1 st Task : 3% Test: Mid-term exam: 9%	Teaching and discussion: - explanation of learning material - explanation of the task - explanation of the assessment [2 × 3 × 50 minutes]	Teaching and discussion: - explanation of learning material - explanation of the task - explanation of the assessment [2 × 3 × 50 minutes] (Specific conditions: The total number of blended learning meetings is 40% of the total number of meetings)	 Students read and study learning materials from the main and additional references Students do assignments independently on: properties of unit matrix, transvection matrix, dilation matrix, permutation matrix [2 × 3 × 120 minutes] 		 PPT I learn (LMS Unand) (Specific condition: Zoom meeting, WA group, learning video) 	 Review Gauss Jordan elimination and Elementary Matrix Unit Matrix Transvection Matrix Dilation Matrix Permutation Matrix 	12%
---------	---	---	--	--	--	--	--	--	--	-----

		determining the permutation matrix (σ) and proving the properties of the permutation matrix.							
4/4	CLO-2 Able to understand and prove special f ormulas in matrices (Hendersen Searle formula, Banacheiwicz inver formula, and Schur complement) (ILO 3: PI 1, 2, 3; ILO 4, PI 1; ILO 5, PI 1, 2, 3)	 Accuracy in calculating Schur's complement for matrix (example) <i>M</i> = [1265534948-3135-72] with different partitions Accuracy in calculating the inverse of a matrix <i>M</i> = [1265534948-3135-72] using Banacheiwicz inverse formula 	Non test : 2 nd Task : 3% Test: Mid-term : 6%	Teaching and discussion: - explanation of learning material - explanation of the task - explanation of the assessment [1 × 3 × 50 minutes]	Teaching and discussion: - explanation of learning material - explanation of the task - explanation of the assessment [1 × 3 × 50 minutes] (Specific conditions: The total number of blended learning meetings is 40% of the total number of meetings)	 Students read and study learning materials from the main and additional references Students do assign-ments indepen-dently on: calculating Schur's comple- ment and calculating the inverse using Banachei-wicz inverse formula X 3 × 120 minutes] 	 PPT I learn (LMS Unand) (Specific condition: Zoom meeting, WA group, learning video) 	 Schur's Complement Banacheiwicz Inverse Formula 	9%
5/5	CLO-2 Able to understand and	• Accuracy in proving the Hendersen	Non test : 3 rd Task : 4%	Teaching and discussion:	Teaching and discussion:	• Students read and study	• PPT	Henderson Searle Formula	9%

	prove special fo rmulas in matrices (Hendersen Searle formula, Banacheiwicz inver formula, and Schur complement) (ILO 3: PI 1, 2, 3; ILO 4, PI 1; ILO 5, PI 1, 2, 3)	Searle formula • Accuracy in proving Hendersen Searle's Corollary formula	Test: Mid-term exam : 5%	 explanation of learning material explanation of the task explanation of the assessment [1 × 3 × 50 minutes] 	 explanation of learning material explanation of the task explanation of the assessment [1 × 3 × 50 minutes] (Specific conditions: The total number of blended learning meetings is 40% of the total number of meetings) 	learning materials from the main and additional references • Students do assign-ments independently on: Henderson Searle formula (Corollary Henderson Searle Formula) [1 × 3 × 120 minutes]	 I learn (LMS Unand) (Specific condition: Zoom meeting, WA group, learning video) 		
6/6	CLO-1 Able to prove the properties of the unit matrix, transvection matrix, dilation matrix, and permutation matrix (ILO 2: PI 1, 2, 3; ILO 3: PI 1, 2)	1 st Quiz	1 st Quiz : 10%	 Quiz with materials: Unit Matrix Transvection Matrix Dilation Matrix Permutation Matrix [1 × 3 × 50 minutes] 	 Quiz with materials: Unit Matrix Transvection Matrix Dilation Matrix Permutation Matrix [1 × 3 × 50 minutes] 	 Students read and study learning materials from the main and additional references Students answer quiz questions [1 × 3 × 120 minutes] 	 PPT I learn (LMS Unand) (Specific condition: Zoom meeting, WA group, learning video) 	 Unit Matrix Transvection Matrix Dilation Matrix Permutation Matrix 	10%

					(Specific conditions: The total number of blended learning meetings is 40% of the total number of meetings)				
7/7	CLO-2 Able to understand and prove special fo rmulas in matrices (Hendersen Searle formula, Banacheiwicz inver formula, and Schur complement) (ILO 3: PI 1, 2, 3; ILO 4, PI 1; ILO 5, PI 1, 2, 3)	2 nd Quiz	2 nd Quiz : 10%	Quiz with materials: • Hendersen Searle formula • Schur's Complement • Banachei-wicz Inverse Formula [1 × 3 × 50 minutes]	 Quiz with materials: Hendersen Searle formula Schur's Complement Banachei-wicz Inverse Formula [1 × 3 × 50 minutes] [1 × 3 × 50 menit] (Specific conditions: The total number of blended learning meetings is 40% of the total 	 Students read and study learning materials from the main and additional references Students answer quiz questions [1 × 3 × 120 minutes] 	 PPT I learn (LMS Unand) (Specific condition : Zoom meeting, WA group, learning video) 	 Hendersen Searle formula Schur's Complement Banacheiwicz inverse formula 	10%

8/8					number of meetings) MID-TERM F				
9,10/9,10	CLO-3 Able to factor matrices with various types of factoriza- tions (<i>LU</i> factorization, Hermite factorization, f ull rank factorization, and singular value decomposi- tion) (ILO 4: PI 1, 2, 3; ILO 5: PI 1, 2, 3)	 Accuracy in factoring matrix A = [2 62 - 3 - 80 4 92] become the LU matrix Accuracy in determining solution of system of linear equation: [-3 12 - 61 - 22011][x y z] [-337 - 1] and [5 5 10 - 8 - 7 - 90426][x y z] [014] using LU decomposition methods Accuracy in factoring matrix A = [1 4 6 3 1 18 2 0 2] using full rank factorization 	Non test : 4 th Task : 4% Test Final exam : 6%	Teaching and discussion: - explanation of learning material - explanation of the task - explanation of the assessment [2 × 3 × 50 minutes]	Teaching and discussion: - explanation of learning material - explanation of the task - explanation of the assessment [2 × 3 × 50 minutes] (Specific conditions: The total number of blended learning meetings is 40% of the total number of meetings)	 Students read and study learning materials from the main and additional references Students do assign-ments independently on: - <i>LU</i> decomposition - Full rank factorization [2 × 3 × 120 minutes] 	 PPT I learn (LMS Unand) (Specific condition : Zoom meeting, WA group, learning video) 	 <i>LU</i> decomposition (Factorization) Permutation Matrix and <i>LU</i> decomposition Echelon Hermite form Full Rank factorization 	10

11/11	CLO-3 Able to factor matrices with various types of factoriza-tions (<i>LU</i> factorization, Hermite factorization, fu Il rank factorization, and singular value decomposi-tion) (ILO 4: PI 1, 2, 3; ILO 5: PI 1, 2, 3)	decomposition of the matrix	Non test : 5 th Task : 3% Test Final Exam: 4%	Teaching and discussion: - explanation of learning material - explanation of the task - explanation of the assessment [1 × 3 × 50 minutes]	Teaching and discussion: - explanation of learning material - explanation of the task - explanation of the assessment [1 × 3 × 50 minutes] (Specific conditions: The total number of blended learning meetings is 40% of the total number of meetings)	 Students read and study learning materials from the main and additional references Students do assignment independently on: singular value decomposition [1 × 3 × 120 minutes] 	 PPT I learn (LMS Unand) (Specific condition : Zoom meeting, WA group, learning video) 	 Eigen value factorization (orthogonal diagonalizatio n) Singular value decomposition 	7%
12,13/ 12,13	CLO-4 Able to determine the pseudo-inverse of a matrix (left inverse, right inverse, and Moore-Penrose inverse) (ILO 4: PI 1, 2, 3; ILO 5: PI 1, 2, 3)	 Accuracy in determining of left inverse of matrix <i>A</i> = [101011001 and right inverse of matrix <i>A</i> = [10101001 Accuracy in determining of 	Non test : 6 th Task: 3% Test Final exam : 10%	Teaching and discussion: - explanation of learning material - explanation of the task - explanation of the assessment [2 × 3 × 50 minutes]	Teaching and discussion: - explanation of learning material - explanation of the task - explanation of the assessment	 Students read and study learning materials from the main and additional references Students do assignment independently on: calculating 	 PPT I learn (LMS Unand) (Specific condition : Zoom meeting, WA group, 	 Left inverse Right inverse Moore-Penrose inverse Properties of Moore-Penrose inverse 	13%

	Moore-Penrose of matrix A = [1 4 6 3 1 18 2 0			[2 × 3 × 50 minutes] (Specific conditions: The total number of blended learning meetings is 40% of the total number of meetings)	pseudo-inverse (left and right inverse, Moore- Penrose inverse and its properties [2 × 3 × 120 minutes]	learning video)		
matric variou of factori (<i>LU</i> factori Herm factori ull rar factori and si value decom) (ILO	o factor res with is types izations ization, ite ization, f ik ization, f ik i i i i i i i i i i i i i i i i i i	3 rd Quiz : 10%	 Quiz with materials: LU decomposition (Factorization) Permutation Matrix and LU decomposition Echelon Hermite form Full Rank factorization Eigen value factorization (orthogonal diagonalization) Singular value 	 Quiz with materials: LU decompositi on (Factorization) Permutation Matrix and LU decomposition Echelon Hermite form Full Rank factorization Eigen value factorization (orthogonal 	 Students read and study learning materials from the main and additional references Students answer quiz questions [1 × 3 × 120 minutes] 	 PPT I learn (LMS Unand) (Specific condition : Zoom meeting, WA group, learning video) 	 <i>LU</i> decomposition (Factorization) Permutation Matrix and <i>LU</i> decomposition Echelon Hermite form Full Rank factorization Eigen value factorization (orthogonal diagonalizatio n) Singular value decomposition 	10%

				decomposi- tion $[1 \times 3 \times 50$ minutes]	diagonaliza- tion) • Singular value decomposi- tion				
					[1 × 3 × 50 minutes] (Specific conditions: The total number of blended learning meetings is 40% of the total number of meetings)				
15/15	CLO-4 Able to determine the pseudo-inverse of a matrix (left inverse, right inverse, and Moore-Penrose inverse) (ILO 4: PI 1, 2, 3; ILO 5: PI 1, 2, 3)	4 th Quiz	4 th Quiz: 10%	 Quiz with material: Left and right inverse Moore-Penrose inverse Properties of Moore-Penrose inverse [1 × 3 × 50 minutes] 	Quiz with material: • Left and right inverse • Moore- Penrose inverse • Properties of Moore- Penrose inverse	 Students read and study learning materials from the main and additional references Students answer quiz questions [1 × 3 × 120 minutes] 	 PPT I learn (LMS Unand) (Specific condition : Zoom meeting, WA group, learning video) 	 Left and right inverse Moore-Penrose nverse Properties of Moore-Penrose inverse 	10%

	[1 × 3 × 50 minutes]		
	(Specific conditions: The total number of blended learning meetings is 40% of the total number of meetings)		
		Total Weight	100%
16/16	FINAL EXAM		

1 credit = 50 minutes face-to-face meeting, 60 minutes structured study, 60 minutes independent study Each meeting duration is 3 credits = 3×50 minutes

Indicators, Criteria, and Assessment Weights

1. Assessment weight for each Assessment

No.	Assessment	Weight (%)
1	Mid-Term Exam	30
2	Final Exam	30
3	Task (Homework)	20
4	Quizzes	20
	TOTAL	100

- 2. Assessment weight for Intended Learning Outcome
 - CLO-1: 23 %
 - CLO-2: 27 %
 - CLO-3: 27 %
 - CLO-4: 23 %

Assessment Plan Table:

No.	Course Learning Outcomes		Assessment									
100		Task (%)	Quiz (%)	Mid-term Exam (%)	Final Exam (%)							
1	An ability to prove the properties of the unit matrix, transvection matrix, dilation matrix, and permutation matrix (ILO 2: PI 1, 2, 3; ILO 3: PI 1, 2)	1 st Task : 3	1 st Quiz : 5	15		23						
2	An ability to understand and prove special formulas in matrices (Hendersen Searle formula, Banacheiwicz inver formula, and Schur complement) (ILO 3: PI 1, 2, 3; ILO 4, PI 1; ILO 5, PI 1, 2, 3)	2 nd Task : 3 3 rd Task : 4	2 st Quiz : 5	15		27						
3	An ability to factor matrices with various types of factorizations (LU factorization, Hermite factorization, full rank factorization, and singular value decomposition) (ILO 4: PI 1, 2, 3; ILO 5: PI 1, 2, 3)	4 th Task : 4 5 th Task : 3	3 rd Quiz : 5		15	27						
4	An ability to determine the pseudo-inverse of a matrix (left inverse, right inverse, and Moore-Penrose inverse) (ILO 4: PI 1, 2, 3; ILO 5: PI 1, 2, 3)	6 th Task : 3	4 th Quiz : 5		15	23						
	Total	20	20	30	30	100						

Task/	About
Homework	
1	Student do assignment individually about properties of unit matrix, transvection matrix, dilation matrix, and permutation matrix
2	Student do assignment individually about calculating Schur's complement, and determining inverse matrix using Banacheiwicz inverse methods
3	Student do assignment individually about proving Corollary of Henderson Searle formula
	Student do assignment individually about:
4	- LU decomposition
	- full rank factorization
5	Student do assignment individually about: singular value decomposition
6	Student do assignment individually about determining pseudo-inverse (left and right inverse, Moore-Penrose inverse, and properties of Moore-Penrose
	inverse

Matrix of CLO and ILO

																IL	O																	
CLO	1		2		3		4			5				6				7			8				9									
	PI			PI			PI			PI			PI				PI				PI			PI				PI						
	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	4	1	2	3	4	5	1	2	3	1	2	3	4	1	2	3	4		

1		۵	۵	۵	۵	۵														
2					۵	۵	۵			۵										
3										۵	۵									
4										Π										